What s left in asymmetry Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction (What is this Protocol About?)

  • This protocol explains how to reduce or “knockdown” a gene’s activity in planarians using RNA interference (RNAi).
  • Planarians are flatworms commonly used to study regeneration (the process of regrowing lost body parts) and tissue maintenance.
  • By injecting lab-made double-stranded RNA (dsRNA) into the planarian, scientists can lower the expression of a specific gene and observe resulting changes, called phenotypes.
  • This method helps researchers understand the role of different genes during regeneration.

Related Background Information

  • The technique was originally described by Sánchez Alvarado and Newmark in 1999.
  • Planarians serve as a powerful model system for studies on regeneration, adult stem cell regulation, aging, and behavior.
  • Other protocols related to planarians include methods for maintaining colonies and imaging their membrane potential.

Key Terms and Concepts

  • RNA interference (RNAi): A method used to reduce or silence the expression of a specific gene.
  • Double-stranded RNA (dsRNA): Two complementary strands of RNA that, when introduced into an organism, trigger RNAi.
  • Phenotype: The observable traits or changes in an organism that result from a change in gene activity.
  • Microinjection: A technique for delivering small volumes of liquid into an organism using a very fine needle.
  • In vitro: Procedures performed in a controlled laboratory environment outside a living organism.

Step-by-Step Method: RNA Synthesis

  • Prepare two separate transcription reactions using enzymes:
    • One reaction uses T3 polymerase and the other uses T7 polymerase.
    • Each reaction includes: DNA template (1 μg), DTT (10 mM), ribonucleotides (1%), RNA transcription buffer (20%), RNasin (60 units), and the respective polymerase (17 units).
    • If using a vector with two T7 promoters, a single T7 reaction may be used after linearizing the DNA.
  • Incubate both reactions at 37°C for 2 hours to synthesize RNA.
  • Add DNase I (1 unit) to each reaction and incubate at 37°C for 15 minutes to remove the DNA template.
  • Reserve 1 μL from each reaction in separate tubes and store at -20°C for later comparison.
  • Combine the remaining 19 μL from each reaction into one tube.
  • Add 360 μL of RNAi Solution A to the combined reaction and let it sit at room temperature for 10 minutes.
  • Add 200 μL of a phenol:chloroform mixture and vortex vigorously to mix.
  • Centrifuge at 14,000 rpm for 2 minutes at room temperature and transfer the clear aqueous phase to a new tube.
  • Add 200 μL of chloroform, vortex again, and centrifuge at 14,000 rpm for 2 minutes; transfer the new aqueous phase to another fresh tube.
  • Heat the tube in a water bath at 68°C for 10 minutes to denature (unfold) the RNA, then incubate at 37°C for 30 minutes to allow the RNA strands to reanneal and form dsRNA.
  • Add 1 mL of cold 100% ethanol and centrifuge at 14,000 rpm for 15 minutes at 4°C to precipitate the RNA.
  • Discard the supernatant and wash the RNA pellet with 1 mL of cold 80% ethanol; centrifuge at 14,000 rpm for 10 minutes at 4°C.
  • Discard the wash solution and resuspend the RNA pellet in 10 μL of nuclease-free water; keep the sample on ice.
  • Verify RNA quality and confirm dsRNA formation by running a small amount on a 1% agarose gel under non-denaturing conditions.

Step-by-Step Method: Microinjection of dsRNA

  • Prepare the microinjection needle:
    • Use a micropipette puller to form a long, thin needle.
    • Break the tip slightly under a dissecting microscope so that about 10%-25% of the tip is removed; the opening should be small enough to prevent unwanted leakage.
  • Fill the needle with mineral oil, ensuring that no air bubbles are present.
  • Attach the needle to the microinjector and adjust its position under a dissecting microscope:
    • Set the microinjector to deliver 32 nanoliters (nL) per pulse.
  • Aspirate 1–2 μL of the dsRNA solution into the needle.
  • Place the planarian on cold, wet tissue (placing ice underneath helps keep it cool and still).
  • Carefully insert the needle into the planarian, typically near the prepharyngeal area (just in front of the mouth), to ensure the needle tip enters the body.
  • Press the injection key to dispense 32 nL; repeat this 3 to 5 times so that the worm’s gastrovascular system fills with the dsRNA solution, confirming successful injection.
  • Transfer the injected planarian to a Petri dish containing fresh planarian water at room temperature.
  • For a stronger gene knockdown effect, repeat the injection process over consecutive days or weeks.

Troubleshooting Common Problems

  • If RNA (ssRNA or dsRNA) is not visible on the agarose gel:
    • Check that all reagents are fresh and have not been repeatedly frozen and thawed.
    • Ensure the DNA template includes both T3 and T7 promoter regions.
    • Work on clean surfaces free from RNase and DNase contamination.
  • If no liquid is dispensed from the needle during injection:
    • Examine the needle for air bubbles.
    • Ensure the needle is securely attached to the microinjector.
  • If you are uncertain whether the injected liquid is entering the planarian:
    • Practice the injection technique; adding a small amount of food coloring to the injection solution can help visualize the process.
  • If no observable phenotype is produced:
    • Check the gene knockdown by methods such as in situ hybridization or RT-PCR to confirm reduced gene expression.
    • Consider adjusting the injection schedule or targeting two genes that may compensate for each other.

Materials and Equipment

  • Reagents:
    • 1% agarose gel, DNA template (with T3 and T7 promoters), DNase I, DTT, ribonucleotides, RNA transcription buffer, RNasin, T3 and T7 polymerases, nuclease-free water, phenol:chloroform mix, chloroform, 100% and 80% ethanol, and RNAi Solution A.
  • Equipment:
    • Microcentrifuge (with both room temperature and 4°C capability), water baths, vortex mixer, micropipette puller, microinjector, dissecting microscope, Petri dishes, and apparatus for agarose gel electrophoresis.
  • Planarians (the flatworms) and planarian water for maintaining them.

Acknowledgments and References

  • The authors acknowledge contributions and funding from organizations such as the NIH, NSF, and others.
  • For more detailed information, refer to the publications by Oviedo et al. (2008) and Sánchez Alvarado and Newmark (1999).

Chinese Version: 简介 (研究背景)

  • 本协议描述了如何利用RNA干扰(RNAi)在平片虫中实现基因敲低,即降低某个基因的活性。
  • 平片虫是一种常用于研究再生(失去的部位重新生长)和组织维持的扁形动物。
  • 通过向平片虫注射体外合成的双链RNA(dsRNA),科学家可以降低目标基因的表达,从而观察到由此产生的表型变化。
  • 这种方法有助于研究者理解不同基因在再生过程中的作用。

相关背景信息

  • 该技术最早由 Sánchez Alvarado 和 Newmark (1999) 描述。
  • 平片虫被认为是研究再生、干细胞调控、衰老及行为的重要模型系统。
  • 其他相关协议包括建立平片虫种群及平片虫细胞膜电位的成像方法。

关键术语和概念

  • RNA干扰 (RNAi):一种降低或沉默特定基因表达的方法。
  • 双链RNA (dsRNA):由两条互补RNA链组成的分子,用于触发RNAi反应。
  • 表型:基因活性改变后在生物体上表现出的可观察特征。
  • 微注射:使用极细针头向生物体内注入极少量液体的技术。
  • 体外:在实验室内控制环境中进行的实验操作,而非在生物体内进行。

分步方法:RNA合成

  • 准备两个独立的转录反应体系,分别使用T3和T7聚合酶:
    • 每个反应中加入:DNA模板 (1 μg)、DTT (10 mM)、核糖核苷酸 (1%)、RNA转录缓冲液 (20%)、RNasin (60单位)和相应的聚合酶 (17单位)。
    • 如果使用双T7启动子的载体,可在酶切后只用T7聚合酶分别进行反应。
  • 在37°C水浴中孵育2小时以进行RNA合成。
  • 向每个反应中加入1单位DNase I,并在37°C下孵育15分钟以去除DNA模板。
  • 从每个反应中取出1μL样品,另存备用并置于-20°C。
  • 将剩余的反应混合物合并到一个管中。
  • 加入360μL RNAi专用溶液A,在室温下静置10分钟。
  • 加入200μL酚:氯仿混合物,剧烈震荡混合以提取RNA。
  • 在室温下以14000 rpm离心2分钟,将上层水相转移到新管中。
  • 加入200μL氯仿,震荡混合后以14000 rpm离心2分钟,再次转移上层水相到新管中。
  • 在68°C水浴中加热10分钟使RNA变性,再于37°C水浴中孵育30分钟使RNA重新配对形成双链RNA。
  • 加入1 mL冷却的100%乙醇,在4°C下以14000 rpm离心15分钟以沉淀RNA。
  • 弃去上清液,用1 mL冷80%乙醇洗涤RNA沉淀,再以14000 rpm在4°C离心10分钟。
  • 弃去洗涤液,将RNA沉淀重悬于10μL无RNA酶水中,并置于冰上保存。
  • 通过在1%琼脂糖凝胶上检测1μL ssRNA样品和0.5μL dsRNA样品,确认双链RNA的形成。

分步方法:dsRNA的微注射

  • 准备微注射针:
    • 使用微吸管拉针仪制作细长针头。
    • 在解剖显微镜下观察,轻轻敲碎针尖,去除大约10%-25%的针尖,确保开口足够小以防止液体泄漏。
  • 用矿物油填充针头,确保无气泡。
  • 将针头安装到微注射器上,并在解剖显微镜下调整好位置:
    • 设定每次注射量为32纳升 (nL)。
  • 吸取1-2μL dsRNA溶液(来自RNA合成步骤)。
  • 将平片虫放在冷湿纸巾上(在下面放冰可保持其凉爽和湿润)。
  • 小心将针头插入平片虫,通常选择口前区域,确保针头进入体内。
  • 按下注射键释放32纳升液体,重复3至5次,使平片虫的胃血管系统充满dsRNA溶液,以确认注射成功。
  • 将注射后的平片虫转移到含有新鲜平片虫水的培养皿中,并保持室温。
  • 为增强表型效果,可在连续几天或几周内重复注射。

常见问题及解决方案

  • 若在琼脂糖凝胶上未检测到RNA(ssRNA或dsRNA):
    • 检查所有试剂是否新鲜,且未反复冻融。
    • 确认DNA模板包含T3和T7启动子区域。
    • 确保在无RNase和DNase污染的环境下操作。
  • 若注射时针头无液体流出:
    • 检查针头内是否存在气泡。
    • 确认针头是否正确安装在微注射器上。
  • 若不确定液体是否进入平片虫体内:
    • 多加练习,可在注射液中加入少量食用色素以便观察。
  • 若未观察到任何表型变化:
    • 通过原位杂交或RT-PCR检测目标基因表达是否降低。
    • 考虑调整注射时间表,或同时靶向两个可能互补的基因。

材料与设备

  • 试剂:
    • 1%琼脂糖凝胶、含T3和T7启动子的DNA、DNase I、DTT、核糖核苷酸、RNA转录缓冲液、RNasin、T3和T7聚合酶、无RNA酶水、酚:氯仿混合物、氯仿、100%及80%乙醇、RNAi专用溶液A。
  • 设备:
    • 微量离心机(水浴室温和4°C均可)、水浴、震荡器、微吸管拉针仪、微注射器、解剖显微镜、培养皿及琼脂糖凝胶电泳仪器。
  • 平片虫及用于维持平片虫生长的平片虫水。

致谢与参考文献

  • 作者感谢各资助机构(如NIH、NSF等)及相关人员的支持。
  • 更多详情请参阅 Oviedo 等人 (2008) 以及 Sánchez Alvarado 与 Newmark (1999) 的相关文献。