What is Basal Cognition?

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What is Basal Cognition? Summary

  • Beyond Brains: Cognition isn’t limited to animals with complex nervous systems. Even single cells and simple organisms can exhibit “cognitive-like” behaviors.
  • Fundamental Information Processing: Basal cognition refers to the basic ability of living systems to sense, process, and respond to information in adaptive ways. It does not have to mean feelings, or similar internal subjective states found in us.
  • Not “Thinking” Like Humans: This doesn’t mean cells are “thinking” in the way humans do. It means they exhibit behaviors like learning, memory, decision-making, and problem-solving, albeit in simpler forms.
  • Examples in Action:
    • Bacteria: Bacteria can sense and move towards nutrients (chemotaxis).
    • Slime Molds: Slime molds can find the shortest path through a maze.
    • Plants: Plants can respond to light, gravity, and touch.
    • Gene Regulatory Networks: Even networks of genes within cells can exhibit learning and memory.
    • Cells within tissue Such as in demonstrating “error-correction” and growth toward “Target Morphology.”
  • Bioelectricity’s Role: Bioelectric signals play a key role in basal cognition, providing a mechanism for information processing and control *outside* the nervous system.
  • A Spectrum of Cognition: Basal cognition suggests that there’s a *spectrum* of cognitive abilities, from the simplest forms in single cells to the complex cognition of humans.
  • Evolutionary Origins: Basal cognition is likely ancient, predating the evolution of nervous systems. The complex capabilities of nervous systems likely built upon these more fundamental forms of information processing.
  • Implications: Understanding basal cognition can help us understand the origins of intelligence, develop new approaches to medicine (e.g., regenerative medicine, cancer therapy), and even design new forms of artificial intelligence.

Rethinking Intelligence: Beyond the Nervous System

When we think of “cognition,” we typically think of things like thinking, reasoning, learning, and problem-solving – abilities we associate with humans and other animals with complex brains. But what if cognition is a much broader phenomenon, extending far beyond the nervous system?

That’s the core idea behind *basal cognition*. It’s the recognition that even simple organisms, and even individual *cells*, exhibit “cognitive-like” behaviors. This doesn’t mean they’re “thinking” in the same way humans do, with consciousness and self-awareness. It means they can:

  • Sense their environment.
  • Process information.
  • Respond to that information in adaptive ways.
  • Learn from experience.
  • Make decisions.
  • Solve problems.
All of these processes may take place *without* feelings (such as emotional experiences found in more evolved/complex life-forms) – this is a profound conceptual difference from classic interpretations on intelligence and awareness, opening a vastly broader set for study.

Not “Thinking,” But Adapting: A Broader Definition

It’s crucial to understand that basal cognition is not about attributing human-like consciousness to cells or bacteria. It’s about recognizing that even the simplest forms of life exhibit a basic form of *information processing* that allows them to adapt to their environment.

  • A Definition: Some capability of any system/agent, to sense information (input) from environment/surrounding, having some process that uses it, for some purpose.
  • The capacity include very simple organisms, including human cells and tissues, going all the way toward nervous, evolved, large systems such as primates. This is unlike past models and paradigms in biology, cognitive, that used words such as “mind”, “agency”, “thinking”, “goals”, or “plans”, very restrictively only within organisms demonstrating relatively complex traits (such as self-awareness). Dr. Levin challenges, and proposes broader re-consideration of terms, across much smaller level, including cell collections and tissue networks.

Think of it like a thermostat. A thermostat doesn’t “think” about the temperature, but it *senses* the temperature, *processes* that information (comparing it to a set point), and *responds* by turning the heat on or off. This is a very simple form of information processing, and basal cognition is similar, though often more complex.


Examples of Basal Cognition: From Bacteria to Plants

We see examples of basal cognition all around us, in a wide variety of organisms:

  • Bacteria: Bacteria can sense chemicals in their environment and move towards nutrients (a process called *chemotaxis*). They can also sense and respond to light, temperature, and other stimuli.
  • Slime Molds: Slime molds, despite being single-celled organisms (or aggregations of single-celled organisms), can find the shortest path through a maze to reach a food source. This demonstrates a remarkable ability to solve spatial problems.
  • Plants: Plants can sense and respond to light, gravity, touch, and even chemical signals from other plants. They can adjust their growth and behavior accordingly.
  • Cells inside Tissues/Organism: Such as forming the “correct shape” and achieving goals, even when given obstacles.

Even Genes Can “Learn”: Gene Regulatory Networks

Remarkably, even the networks of genes *within* cells can exhibit forms of learning and memory. *Gene regulatory networks* (GRNs) are interconnected sets of genes and proteins that control gene expression. These networks can “learn” from past experiences, adjusting their response to future stimuli based on previous inputs. A simple, isolated, tiny collection of protein can habituate, consolidate a change, among many surprising properties, all without being a nervous-system!

For example, scientists researched that when GRN undergo similar experiments on animal behavior training, such as Classical (Pavlovian) Conditioning, even gene networks will express behaviours demonstrating those properties – sensitizing (strengthening), habituation, and conditioning pairing of cues.


Bioelectricity: The Language of Basal Cognition

How do cells and simple organisms achieve these cognitive-like behaviors without a nervous system? A key part of the answer lies in *bioelectricity*.

As we’ve learned, all cells maintain an electrical voltage across their membranes, and these voltage patterns can act as a kind of information-processing system. Bioelectric signals can:

  • Encode information about the environment.
  • Transmit signals between cells (especially through gap junctions).
  • Control cell behavior (division, differentiation, migration, etc.).

Bioelectricity provides a mechanism for information processing and control that is *independent* of the nervous system, allowing even single cells and simple organisms to exhibit basic forms of cognition. Signals also cross entire collection of tissues; and because gap junction allows direct cytoplasmic sharing of not only electric information, but other physiological status data, such cells and its neighboring tissues now form a single, cognitive system working within a wider span of concerns.


A Spectrum of Cognition: From Simple to Complex

Basal cognition suggests that there’s not a sharp dividing line between “cognitive” and “non-cognitive” systems. Instead, there’s a *spectrum* of cognitive abilities, ranging from the simplest forms in single cells to the complex cognition of humans.

We can think of it like a ladder, with each rung representing a different level of cognitive ability. At the bottom rung, we have the basic information processing of bacteria and single cells. As we move up the ladder, we encounter increasingly complex forms of cognition, culminating in the sophisticated intelligence of humans and other animals with advanced nervous systems.

That framework helps shift perspective: it moves discussion from simply searching “cutoff”, between single cell to full brain, to consider degrees and differences (span/reach, and depth of planning possible, problem space) which helps with research considerations on comparing different organisms (such as when and how exactly complex system builds/grow from much simpler origins). For Dr. Levin, basal cognition offers the very powerful alternative conceptualization of the process of biological goal and decision in various level of organizations – tissues as active agent, and cancer as shrinking concern on smaller individual cells/units rather than broader consideration that includes collective.


The Evolutionary Roots of Intelligence

Basal cognition is likely ancient, predating the evolution of nervous systems. The complex cognitive abilities of animals with brains probably evolved from these more fundamental forms of information processing.

Think of it like the evolution of computers. The earliest computers were simple mechanical devices that could only perform basic calculations. Over time, computers became more complex and powerful, eventually leading to the sophisticated machines we have today. Similarly, the earliest forms of cognition were likely simple sensing and responding mechanisms in single cells. Over billions of years of evolution, these mechanisms became more sophisticated, leading to the evolution of nervous systems and complex brains.


Implications of Basal Cognition

Understanding basal cognition has far-reaching implications:

  • Understanding the Origins of Intelligence: It can help us understand how intelligence evolved from simpler forms of information processing.
  • Regenerative Medicine: By understanding how cells “make decisions” during regeneration, we might be able to develop new therapies to trigger the regrowth of lost limbs or organs.
  • Cancer Therapy: Cancer can be seen as a breakdown of normal cellular communication and decision-making. Understanding basal cognition could lead to new ways to target cancer cells and restore normal tissue behavior.
  • Artificial Intelligence: The principles of basal cognition could inspire new approaches to designing AI systems, creating networks of simple agents that can exhibit emergent intelligence.
  • Synthetic Biology: Understanding basal cognition can improve the design of synthetic constructs.
  • Re-interpreting cells’ behavior: In some, or many cases, “simple physics” is not enough explanation for the way complex processes occur within biology. Basal Cognition allows for an alternative, very useful consideration/hypothesis that even very minimal, units, when linked together as collections, behave in intelligent manner to self-assemble complex form.

Basal cognition challenges our anthropocentric view of intelligence and opens up new ways of thinking about the remarkable information-processing abilities of all living systems.


什么是基础认知?摘要

  • 超越大脑: 认知不仅限于具有复杂神经系统的动物。即使是单细胞和简单的生物体也可以表现出“认知样”行为。
  • 基本信息处理: 基础认知是指生命系统以适应性方式感知、处理和响应信息的基本能力。它不一定意味着感觉,或我们身上发现的类似内部主观状态。
  • 不像人类那样“思考”: 这并不意味着细胞像人类一样“思考”。这意味着它们表现出学习、记忆、决策和解决问题等行为,尽管形式更简单。
  • 实例:
    • 细菌: 细菌可以感知并向营养物质移动(趋化性)。
    • 粘菌: 粘菌可以找到穿过迷宫的最短路径。
    • 植物: 植物可以响应光、重力和触摸。
    • 基因调控网络: 甚至细胞内的基因网络也可以表现出学习和记忆。
    • 组织内的细胞: 例如,在展示“纠错”和朝着“目标形态”生长时。
  • 生物电的作用: 生物电信号在基础认知中起着关键作用,提供了一种*神经系统之外*的信息处理和控制机制。
  • 认知谱: 基础认知表明,存在一个*认知能力谱*,从单细胞中最简单的形式到人类的复杂认知。
  • 进化起源: 基础认知可能是古老的,早于神经系统的进化。神经系统的复杂能力可能建立在这些更基本的信息处理形式之上。
  • 意义: 理解基础认知可以帮助我们理解智力的起源,开发新的医学方法(例如,再生医学、癌症治疗),甚至设计新形式的人工智能。

重新思考智能:超越神经系统

当我们想到“认知”时,我们通常会想到思考、推理、学习和解决问题 —— 我们将这些能力与人类和其他具有复杂大脑的动物联系起来。但是,如果认知是一种更广泛的现象,远远超出了神经系统呢?

这就是*基础认知*背后的核心思想。它是认识到即使是简单的生物体,甚至单个*细胞*,也表现出“认知样”行为。这并不意味着它们像人类一样“思考”,具有意识和自我意识。这意味着它们可以:

  • 感知它们的环境。
  • 处理信息。
  • 响应以适应性方式对该信息做出反应。
  • 学习从经验中学习。
  • 做出决定
  • 解决问题
所有这些过程都可能*没有*感觉(例如更进化/复杂的生命形式中发现的情感体验)—— 这与经典解释有很大的不同关于智力和意识,开启了一个更广阔的研究领域。

不是“思考”,而是适应:更广泛的定义

重要的是要理解基础认知不是将人类的意识归因于细胞或细菌。它是关于认识到即使是最简单的生命形式也表现出一种基本形式的*信息处理*,使它们能够适应环境。

  • 定义: 任何系统/主体的某种能力,用于感知来自环境/周围环境的信息(输入),具有使用它的某些过程,用于某些目的。
  • 这种能力包括非常简单的生物体,包括人类细胞和组织,一直到神经、进化的大型系统,如灵长类动物。这与过去生物学、认知中的模型和范式不同,后者使用的诸如“心灵”、“能动性”、“思考”、“目标”或“计划”等词语非常严格,仅限于表现出相对复杂特征(如自我意识)的生物体。莱文博士挑战并提出了对术语的更广泛的重新考虑,范围更小,包括细胞集合和组织网络。

可以把它想象成一个恒温器。恒温器不会“思考”温度,但它会*感知*温度,*处理*该信息(将其与设定点进行比较),并通过打开或关闭加热器来*响应*。这是一种非常简单的信息处理形式,基础认知与此类似,尽管通常更复杂。


基础认知的例子:从细菌到植物

我们可以在周围看到各种各样的生物体中看到基础认知的例子:

  • 细菌: 细菌可以感知环境中的化学物质并向营养物质移动(一种称为*趋化性*的过程)。它们还可以感知和响应光、温度和其他刺激。
  • 粘菌: 粘菌,尽管是单细胞生物(或单细胞生物的聚集体),但可以找到穿过迷宫到达食物来源的最短路径。这展示了一种非凡的解决空间问题的能力。
  • 植物: 植物可以感知和响应光、重力、触摸,甚至是来自其他植物的化学信号。它们可以相应地调整它们的生长和行为。
  • 组织/生物体内的细胞: 例如形成“正确的形状”并实现目标,即使遇到障碍。

甚至基因也可以“学习”:基因调控网络

值得注意的是,即使是细胞*内*的基因网络也可以表现出学习和记忆的形式。*基因调控网络* (GRN) 是控制基因表达的相互连接的基因和蛋白质集合。这些网络可以从过去的经验中“学习”,根据先前的输入调整它们对未来刺激的反应。一个简单、孤立、微小的蛋白质集合可以适应、巩固变化,以及许多令人惊讶的特性,所有这些都不属于神经系统!

例如,科学家研究表明,当 GRN 进行类似于动物行为训练的实验时,例如 经典(巴甫洛夫)条件反射,甚至基因网络也会表达出表现出这些特性的行为 —— 敏化(加强)、习惯化和条件反射配对线索。


生物电:基础认知的语言

细胞和简单的生物体如何在没有神经系统的情况下实现这些认知样行为?答案的关键部分在于*生物电*。

正如我们所了解的,所有细胞都在其细胞膜上保持电压,这些电压模式可以充当一种信息处理系统。生物电信号可以:

  • 编码有关环境的信息。
  • 在细胞之间传递信号(尤其是通过间隙连接)。
  • 控制细胞行为(分裂、分化、迁移等)。

生物电提供了一种*独立于*神经系统的信息处理和控制机制,允许即使是单细胞和简单的生物体也表现出基本形式的认知。 信号也穿过整个组织集合;而且由于间隙连接允许直接的细胞质共享,不仅共享电信息,还共享其他生理状态数据,因此这些细胞及其相邻组织现在形成一个单一的认知系统,在更广泛的关注范围内工作。


认知谱:从简单到复杂

基础认知表明,“认知”系统和“非认知”系统之间没有明确的界限。相反,存在一个*认知能力谱*,从单细胞中最简单的形式到人类的复杂认知。

我们可以把它想象成一个梯子,每一级代表不同水平的认知能力。在最底层,我们有细菌和单细胞的基本信息处理。当我们向上移动梯子时,我们会遇到越来越复杂的认知形式,最终达到人类和其他具有高级神经系统的动物的复杂智能。

该框架有助于转变视角:它将讨论从简单地搜索单细胞到完整大脑之间的“分界线”,转向考虑程度和差异(范围/广度、可能的计划深度、问题空间),这有助于研究考虑比较不同的生物体(例如复杂系统何时以及如何从更简单的起源构建/生长)。对于莱文博士来说,基础认知为生物目标和各种组织水平(作为主动主体的组织,以及癌症作为关注较小的个体细胞/单位的缩小,而不是包括集体的更广泛的考虑)的决策过程提供了一种非常强大的替代概念化。


智能的进化根源

基础认知可能是古老的,早于神经系统的进化。具有大脑的动物的复杂认知能力可能是从这些更基本的信息处理形式进化而来的。

可以把它想象成计算机的进化。最早的计算机是简单的机械设备,只能执行基本的计算。随着时间的推移,计算机变得更加复杂和强大,最终产生了我们今天拥有的复杂机器。同样,最早的认知形式可能是单细胞中简单的传感和响应机制。经过数十亿年的进化,这些机制变得更加复杂,导致神经系统和复杂大脑的进化。


基础认知的意义

理解基础认知具有深远的影响:

  • 了解智能的起源: 它可以帮助我们了解智能是如何从更简单的信息处理形式进化而来的。
  • 再生医学: 通过了解细胞在再生过程中如何“做出决定”,我们或许能够开发出新的疗法来触发失去的四肢或器官的再生。
  • 癌症治疗: 癌症可以被视为正常细胞通讯和决策的崩溃。了解基础认知可能会带来靶向癌细胞和恢复正常组织行为的新方法。
  • 人工智能: 基础认知的原理可以启发设计 AI 系统的新方法,创建可以表现出涌现智能的简单主体网络。
  • 合成生物学:了解基础认知可以改进合成结构的设计。
  • 重新解释细胞的行为: 在某些或许多情况下,“简单的物理学”不足以解释复杂过程在生物学中发生的方式。基础认知允许一种替代的、非常有用的考虑/假设,即即使是非常小的单位,当作为集合链接在一起时,也会以智能的方式自组装成复杂的形式。

基础认知挑战了我们以人类为中心的智能观,并开辟了思考所有生命系统非凡的信息处理能力的新方法。