What are Anthrobots?

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What are Anthrobots? Summary

  • Human-Made “Life”: Anthrobots are tiny, multicellular biological machines created from *human* tracheal (lung airway) cells.
  • Not Genetically Modified: They are *not* genetically engineered. Their novel behaviors emerge from changing their environment, not their DNA.
  • Self-Assembling: They don’t require external sculpting or molding. The cells spontaneously self-organize into these structures.
  • Motile: Anthrobots can move around in their environment, propelled by cilia (tiny hair-like structures) on their surface.
  • Different Shapes and Sizes: They exhibit a variety of morphologies, from spherical to elongated, and different movement patterns.
  • Unexpected Abilities: Remarkably, Anthrobots can even promote the repair of damaged neural tissue *in vitro* (in a lab dish), a behavior not seen in their original lung cell state.
  • Plasticity: They demonstrate the incredible *plasticity* of somatic cells – their ability to adopt new forms and functions outside of their normal developmental context.
  • “Latent Potential”: They show that even ordinary cells have a hidden “latent potential” for self-organization and novel behaviors.
  • Implications: Anthrobots have implications for regenerative medicine, synthetic biology, and our understanding of how cells communicate and cooperate.
  • Not Robots: Despite the name, they don’t have engineered chips/metals or electronic circuits, etc.

Beyond Xenobots: Human Cells, New Tricks

You may have heard of xenobots – the tiny, self-propelled biological “robots” created from frog (Xenopus laevis) embryonic cells. Anthrobots are a kind of conceptual “cousin” to xenobots, but with a crucial difference: they’re made from *human* cells.

Just as xenobots challenge and extend our assumptions about biology, cells and emergent capabilities, so does Anthrobots; however they involve the striking element, demonstrating never-before-seen or done – human-cell based, emergent structure and behaviours.

Specifically, anthrobots are built from adult human tracheal epithelial cells – the cells that line the airways of your lungs. These cells, in their normal environment, help to clear mucus and debris from your lungs. But when placed in a new context, they do something completely unexpected.


No Genetic Engineering Required: The Power of Environment

It’s important to emphasize that anthrobots are *not* genetically modified organisms (GMOs). Their DNA is completely normal. Their novel behaviors arise not from altering their genes, but from altering their *environment*. They’re ordinary human cells doing extraordinary things.

This is a powerful demonstration of the principle that genes are not the sole determinants of cell behavior. The *context* in which cells find themselves – the surrounding signals, the physical environment, and the interactions with other cells – plays a crucial role in shaping what they do.


Self-Assembly: Building Themselves from Scratch

Unlike many artificial biological constructs, anthrobots are not built piece-by-piece, like a tiny Lego creation. They *self-assemble*. Researchers take the human tracheal cells, place them in a special culture medium, and the cells spontaneously organize themselves into small, multicellular structures.

This self-assembly is a testament to the inherent ability of cells to communicate, cooperate, and build complex structures, even outside of their normal developmental context. It’s like giving a group of people a pile of building materials and seeing them spontaneously construct a house, without any blueprints or instructions.


Movement and Morphology: A Variety of Forms

Anthrobots are not all identical. They exhibit a variety of morphologies (shapes) and movement patterns:

  • Shapes: Some are roughly spherical, while others are more elongated or irregular.
  • Sizes: They range in size from about 30 to 500 micrometers (microns) – smaller than the width of a human hair to barely visible to the naked eye.
  • Movement: They move using *cilia* – tiny, hair-like structures on their surface. In the lungs, cilia beat in a coordinated way to sweep mucus and debris out of the airways. In anthrobots, the cilia propel them through the liquid medium. Some move in circles, others in straight lines, and some just wiggle around.

Their range, which can be single-cell all the way to forming multicellular shapes, exhibit variety.


Unexpected Abilities: Healing Neural Tissue

Perhaps the most surprising discovery about anthrobots is their ability to promote the repair of damaged neural tissue *in vitro* (in a lab dish). When placed near a “wound” in a layer of nerve cells, anthrobots can stimulate the regrowth of neurons and the bridging of the gap.

This discovery highlight several insights on cells, behaviors and their biological environment:

  • The behavior and outcome wasn’t predictable. The host/source cells were tracheal cells, normally used for respiratory (lung-region) tasks such as sweeping/cleaning dust or mucus using cilia. They would never come close to “repair neuron connections/growth” as normal function.
  • Latent potential:It supports “basal cognition” discussed extensively by Dr. Levin – showing latent problem-solving (and other cognitive) ability even within mature, non-neural human cell backgrounds, if they were put outside traditional top-down goal context (that restricted/directed it for ordinary purpose – such as “lung cleaning” in this example).

This is completely unexpected behavior for lung cells. It suggests that cells have hidden “competencies” that can be revealed when they are placed in a new environment and freed from their normal developmental constraints. They are solving problems they would *never* solve or exposed to inside normal body, where many signals and cues pre-sets specific functions for each cells in some region.


Implications and Applications: What Anthrobots Teach Us

Anthrobots are more than just a scientific curiosity. They have several important implications:

  • Regenerative Medicine: The ability of anthrobots to promote neural repair suggests potential applications in treating neurological injuries or diseases. While this is still very early research, it opens up exciting possibilities.
  • Synthetic Biology: Anthrobots provide a new platform for studying how cells self-organize and how we can control this process to build new biological structures with desired functions.
  • Understanding Cellular Communication: They offer a unique system for studying how cells communicate and cooperate, even outside of their normal developmental context.
  • Understanding basal cognition. The results have huge consequences: They suggest normal somatic human cells contain, beyond their apparent, limited roles/purposes – basal cognition abilities.

Exploring the “Latent Space” of Biology

Michael Levin uses the term “latent space” to describe the vast range of possible biological forms and functions that *could* exist, but that we don’t normally see in nature. Anthrobots are a glimpse into this latent space. They show us that even ordinary human cells have a hidden potential for self-organization, movement, and even tissue repair, when given the opportunity.

They provide evidence to a model for building biology not necessarily by top-down directed building (such as physically placing and arranging pieces to reach goals), but rather setting the goal (much as Anatomical Compiler concepts describe) and, by freeing cell groups toward desired functions, allowing their intrinsic ability to build solutions by emergence.

They challenge our traditional, gene-centric view of biology and highlight the importance of the environment in shaping cell behavior. They remind us that there’s still much to learn about the amazing potential of living systems.


什么是人造机器人 (Anthrobots)?摘要

  • 人造“生命”: 人造机器人是由*人类*气管(肺部气道)细胞产生的微型多细胞生物机器。
  • 非转基因: 它们*不是*基因工程的。它们的新行为来自改变它们的环境,而不是它们的 DNA。
  • 自组装: 它们不需要外部雕刻或成型。细胞自发地自组织成这些结构。
  • 能动的: 人造机器人可以在它们的环境中移动,由它们表面的纤毛(微小的毛发状结构)推动。
  • 不同的形状和大小: 它们表现出多种形态,从球形到细长形,以及不同的运动模式。
  • 意想不到的能力: 值得注意的是,人造机器人甚至可以在*体外*(在实验室培养皿中)促进受损神经组织的修复,这是它们原始肺细胞状态下看不到的行为。
  • 可塑性: 它们证明了体细胞令人难以置信的*可塑性*—— 它们在正常发育环境之外采用新形式和功能的能力。
  • “潜在潜力”: 它们表明,即使是普通的细胞也具有隐藏的自组织和新行为的“潜在潜力”。
  • 启示: 人造机器人对再生医学、合成生物学以及我们对细胞如何沟通和合作的理解具有重要意义。
  • 不是机器人: 尽管有这个名字,但它们没有工程芯片/金属或电子电路等。

超越异种机器人:人类细胞,新把戏

你可能听说过异种机器人 —— 由青蛙 (*Xenopus laevis*) 胚胎细胞产生的微型、自推进的生物“机器人”。人造机器人是异种机器人在概念上的一种“表亲”,但有一个关键的区别:它们是由*人类*细胞制成的。

正如异种机器人挑战和扩展了我们对生物学、细胞和涌现能力的假设一样,人造机器人也一样;然而,它们涉及惊人的元素,展示了前所未见的 —— 基于人类细胞的涌现结构和行为。

具体来说,人造机器人是由成人人类气管上皮细胞构建的 —— 这些细胞排列在你肺部的气道中。这些细胞在它们的正常环境中,有助于清除肺部的粘液和碎屑。但当被放置在一个新的环境中时,它们会做一些完全出乎意料的事情。


无需基因工程:环境的力量

重要的是要强调,人造机器人*不是*转基因生物 (GMO)。它们的 DNA 完全正常。它们的新行为不是来自改变它们的基因,而是来自改变它们的*环境*。它们是做着非凡事情的普通人类细胞。

这有力地证明了基因不是细胞行为的唯一决定因素这一原则。细胞所处的*环境* —— 周围的信号、物理环境以及与其他细胞的相互作用 —— 在塑造它们的作用方面起着至关重要的作用。


自组装:从头开始构建自己

与许多人造生物结构不同,人造机器人不是像微型乐高积木那样逐块构建的。它们是*自组装*的。研究人员取出人类气管细胞,将它们放置在一种特殊的培养基中,细胞自发地组织成小的多细胞结构。

这种自组装证明了细胞固有的沟通、合作和构建复杂结构的能力,即使在它们正常的发展环境之外也是如此。这就像给一群人一堆建筑材料,看着他们自发地建造一所房子,没有任何蓝图或说明。


运动和形态:各种形式

人造机器人并非完全相同。它们表现出多种形态(形状)和运动模式:

  • 形状: 有些大致呈球形,而另一些则更细长或不规则。
  • 大小: 它们的大小从大约 30 到 500 微米(微米)不等 —— 比人类头发的宽度还小,肉眼几乎看不见。
  • 运动: 它们使用*纤毛*移动 —— 它们表面的微小毛发状结构。在肺部,纤毛以协调的方式跳动,以清除粘液和碎屑。在人造机器人中,纤毛推动它们穿过液体介质。有些绕圈移动,有些直线移动,有些只是来回摆动。

它们的范围,可以从单细胞一直到形成多细胞形状,表现出多样性。


意想不到的能力:修复神经组织

关于人造机器人,也许最令人惊讶的发现是它们能够在*体外*(在实验室培养皿中)促进受损神经组织的修复。当放置在神经细胞层中的“伤口”附近时,人造机器人可以刺激神经元的再生和间隙的桥接。

这一发现突出了关于细胞、行为及其生物环境的几个见解:

  • 行为和结果是不可预测的。宿主/来源细胞是气管细胞,通常用于呼吸(肺部区域)任务,例如使用纤毛清扫/清洁灰尘或粘液。作为正常功能,它们永远不会接近“修复神经元连接/生长”。
  • 潜在潜力:它支持 Levin 博士广泛讨论的“基础认知”—— 显示潜在的问题解决(和其他认知)能力,即使在成熟的、非神经的人类细胞背景中也是如此,如果它们被置于传统自上而下的目标环境之外(限制/指导它用于普通目的 —— 例如本例中的“肺部清洁”)。

这对于肺细胞来说是完全出乎意料的行为。这表明细胞具有隐藏的“能力”,当它们被放置在一个新的环境中并从其正常的发展约束中解放出来时,这些能力就可以被揭示出来。它们正在解决在正常体内*永远*不会解决或暴露的问题,在那里许多信号和线索预先设定了特定区域中每个细胞的特定功能。


启示和应用:人造机器人教会我们什么

人造机器人不仅仅是一种科学上的好奇心。它们具有几个重要的意义:

  • 再生医学: 人造机器人促进神经修复的能力表明了在治疗神经损伤或疾病方面的潜在应用。虽然这仍然是非常早期的研究,但它开辟了令人兴奋的可能性。
  • 合成生物学: 人造机器人为研究细胞如何自组织以及我们如何控制这个过程以构建具有所需功能的新生物结构提供了一个新平台。
  • 理解细胞通讯: 它们提供了一个独特的系统来研究细胞如何沟通和合作,即使在它们正常的发展环境之外也是如此。
  • 理解基础认知。结果具有巨大的影响:它们表明正常体细胞人类细胞包含,超出其明显的、有限的角色/目的 —— 基础认知能力。

探索生物学的“潜空间”

Michael Levin 使用术语“潜空间”来描述*可能*存在但我们在自然界中通常看不到的各种可能的生物形式和功能。人造机器人让我们得以一窥这个潜空间。它们向我们表明,即使是普通的人类细胞,在有机会的情况下,也具有自组织、运动,甚至组织修复的隐藏潜力。

它们为一种构建生物学的新模型提供了证据,这种模型不一定是通过自上而下指导的构建(例如物理放置和排列碎片以达到目标),而是通过设定目标(就像解剖编译器概念所描述的那样),并通过释放细胞群朝着所需的功能,允许它们固有的能力通过涌现来构建解决方案。

它们挑战了我们传统的、以基因为中心的生物学观点,并强调了环境在塑造细胞行为方面的重要性。它们提醒我们,关于生命系统的惊人潜力,还有很多东西需要学习。