Screening biophysical sensors and neurite outgrowth actuators in human induced pluripotent stem cell derived neurons Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction: What Was Observed?

  • All living cells maintain a membrane potential by controlling the flow of ions (such as sodium, potassium, calcium, and chloride) across their membranes.
  • This electrical “battery” helps regulate cell behaviors like migration, proliferation, differentiation, and even tissue repair.
  • This study focuses on human neurons derived from induced neural stem cells (hiNSC) to understand bioelectric signals and their role in nerve repair.

Understanding the Methods (Step-by-Step)

  • Cell Culture:
    • hiNSC are grown on feeder layers and induced to differentiate into neurons over approximately 10 days.
    • By day 10, most cells express the neuronal marker TUJ1 and begin forming extensive neural networks by day 15.
  • Live Sensor Dyes:
    • Cell morphology dyes such as Calcein Green and Calcein Red-Orange label live cells, highlighting cell bodies and neurite extensions.
    • Nuclear dyes like DAPI are avoided because they mainly stain dead cells and can be toxic; Hoechst is used more cautiously.
    • These dyes enable real-time imaging of neurons, allowing researchers to “see” cell shape and network formation without harming the cells.
  • Ion and Voltage Measurements:
    • CoroNa AM detects intracellular sodium (Na+) by increasing its fluorescence as Na+ levels rise—imagine it as a sensor that “lights up” when sodium goes up.
    • APG2-AM is used for monitoring intracellular potassium (K+) levels, although it may also be influenced by other ions.
    • Fluo4-AM measures intracellular calcium (Ca2+) dynamics, a key signal in neurons. For instance, applying glutamate causes a measurable increase in Ca2+.
    • DiBAC monitors resting membrane potential; as cells depolarize (become less negative), DiBAC’s fluorescence increases.
  • Cell Activity Sensors:
    • SNARF-5F AM detects intracellular pH changes, with fluctuations acting as signals of cellular stress or injury.
    • Peroxy Orange 1 (PO1) measures reactive oxygen species (ROS), byproducts of metabolism that indicate cellular stress or damage.

Nerve Repair and Neurite Outgrowth: The Scratch Assay

  • A scratch is made in a confluent layer of mature hiNSC-derived neurons to simulate a nerve injury.
  • Over the next several days, neurons extend neurites (branch-like projections) into the scratch area, similar to roots growing into an empty space.
  • Live dyes help visualize and quantify neurite density within the injured area, providing a measure of how well the nerve repair is progressing.

Effects of Neurotransmitters on Neurite Outgrowth

  • Acetylcholine:
    • At lower concentrations, acetylcholine shows little effect initially.
    • At higher concentrations, it exhibits a biphasic effect—first suppressing neurite outgrowth shortly after injury, then later increasing neurite density along the scratch edge.
    • This two-phase effect suggests acetylcholine can both delay and later promote aspects of nerve repair.
  • Serotonin:
    • Serotonin significantly enhances neurite outgrowth in a dose-dependent manner.
    • Neurites tend to grow longer and perpendicular to the injury, a pattern associated with more effective nerve regeneration.
  • GABA:
    • GABA treatment does not significantly alter neurite outgrowth compared to controls, indicating it may not be a major factor in this repair process.

Effects of Extracellular pH on Neurite Outgrowth

  • Acidic conditions (around pH 6) lead to an early increase in neurite density, though the effect may normalize over time.
  • Neutral to slightly alkaline conditions (pH 7–8) tend to decrease neurite outgrowth as time progresses.
  • This suggests that a slightly acidic environment may promote better nerve repair, much like a specific pH is required for a recipe to “cook” just right.

Key Conclusions and Implications

  • The study establishes a suite of bioelectric sensors that can monitor live neuron characteristics including morphology, ion levels, membrane potential, pH, and metabolic stress (ROS).
  • These methods provide a clear, step-by-step “recipe” for understanding how neurons respond to injury and initiate repair.
  • By manipulating factors such as neurotransmitter levels and extracellular pH, researchers can influence nerve repair and regeneration.
  • The findings have potential implications for developing therapies for injuries, congenital defects, and diseases by targeting the bioelectric properties of cells.

观察:研究所见内容简介

  • 所有活细胞通过控制钠、钾、钙和氯等离子穿越细胞膜的流动来维持膜电位。
  • 这种细胞“电池”调控着细胞的运动、增殖、分化以及组织修复等多种行为。
  • 本研究聚焦于由诱导神经干细胞(hiNSC)衍生的人类神经元,以探索生物电信号及其在神经修复中的作用。

方法解析(逐步说明)

  • 细胞培养:
    • hiNSC在饲养层上生长,并在大约10天内被诱导分化为神经元。
    • 到第10天,大多数细胞会表达神经元特异性标记TUJ1,并在第15天形成广泛的神经网络。
  • 活细胞传感染料:
    • 使用Calcein Green和Calcein Red-Orange等染料标记活细胞,显示细胞体及其神经突(延伸部分)的形态。
    • 由于DAPI容易染色死亡细胞且具有毒性,因此采用Hoechst染料需特别谨慎。
    • 这些染料使研究者能够实时观察神经元的形态和网络形成,而不会对细胞造成损伤。
  • 离子及电压测量:
    • CoroNa AM用于检测细胞内钠离子(Na+)水平,当钠离子增多时,其荧光增强,就像一个“亮起”的传感器。
    • APG2-AM用于监测细胞内钾离子(K+)水平,但可能也会受到其他离子的影响。
    • Fluo4-AM用于测量钙离子(Ca2+)动态;例如,添加谷氨酸后细胞内钙离子水平会显著上升。
    • DiBAC用于监测静息膜电位;当细胞去极化(膜电位变得不那么负)时,DiBAC的荧光会增强。
  • 细胞活动传感器:
    • SNARF-5F AM用于检测细胞内pH值变化,这种变化就像细胞在受压或受损时发出的信号。
    • Peroxy Orange 1 (PO1)用于检测反应性氧种(ROS),它们是细胞代谢的副产物,可反映细胞的压力或损伤情况。

神经修复与神经突生长:划痕实验

  • 在密集的成熟神经元层上制造一条划痕,模拟神经损伤。
  • 随后的几天中,神经元会向划痕区域延伸出神经突,就像树根生长进空缺处一样。
  • 利用活细胞染料观察并量化划痕区域内神经突的密度,以评估神经修复的效果。

神经递质对神经突生长的影响

  • 乙酰胆碱:
    • 低浓度时对神经突生长的影响不大;但在高浓度下,乙酰胆碱呈现双相效应——早期抑制神经突生长,随后在划痕边缘增加神经突密度。
    • 这种双阶段效应表明,乙酰胆碱既可能延迟又可能促进某些神经修复过程。
  • 血清素:
    • 血清素能显著促进神经突的生长,效果呈剂量依赖性。
    • 神经突延伸更长且通常呈垂直于损伤方向生长,这种模式与更有效的神经再生有关。
  • GABA:
    • 使用GABA处理后,神经突生长与对照组无明显差异,表明GABA在此修复过程中作用不大。

细胞外pH对神经突生长的影响

  • 当外部环境变得更酸性(pH约为6)时,早期神经突密度会增加,但这种效应可能在后期趋于平稳。
  • 而在中性至略碱性环境(pH 7至8)下,随着时间推移,神经突生长反而会减少。
  • 这表明略酸性的环境可能更有利于神经修复,就像某些食谱需要特定pH值才能达到最佳效果一样。

主要结论与启示

  • 本研究构建了一套生物电传感器,能够实时监测神经元的形态、离子浓度、膜电位、pH值以及代谢压力(ROS)。
  • 这些方法提供了一份详细的“操作指南”,帮助我们理解神经元如何响应损伤并启动修复。
  • 通过调控神经递质浓度和细胞外pH值,可以有效影响神经修复和再生。
  • 这些发现为开发针对损伤、先天缺陷及疾病的疗法提供了新的思路,即通过调控细胞的生物电特性来促进修复。