Michael Levin: What Is The Field Of Diverse Intelligence (DI)? All Possible Intelligent Agents Bioelectricity Podcast Notes

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Prisoner’s Dilemma and the Computational Boundary of Self

  • Traditional Prisoner’s Dilemma simulations have a fixed number of players who can cooperate or defect.
  • Biology is more complex: biological entities (cells, tissues, etc.) can merge and split, changing the number of “players” and thus the payoff matrix. This introduces a dynamic aspect absent in standard models.
  • Merging provides benefits, particularly with transfer of metabolic data and the ability to erase personal ‘memory’ which provides group benefit.
  • Levin’s computational boundary of self is a framework for understanding diverse intelligences on a single scale, regardless of brain structure, environment, or scale (molecular to planetary).
  • The core idea: All intelligent agents share the ability to pursue goals, some simple, some complex.
  • The framework maps agents based on the size (in space and time) of the largest goal they can pursue (their “cognitive light cone”). A bacterium’s goal might be local sugar concentration; a human’s might be world peace.
  • This framework is designed for empirical research: It allows for testable hypotheses about an agent’s goals, the problem space it operates in, and its competencies (how well it achieves goals).

Diverse Intelligence, Naturalizing Cognition, and Objections

  • Goal of DI is *not* to anthropomorphize, but to *naturalize* cognition. To understand thinking processes outside of a narrow, human-centric definition.
  • Levin’s ideas receive criticism from both reductionists (who dislike agential language) and organicists (who dislike including machines on the same spectrum as living beings).
  • Reductionists often argue for explanation at the molecular level and see agential talk as pre-scientific.
  • Organicists often want a sharp distinction between machines and living organisms, fearing a loss of respect for life.
  • Levin argues for a *continuum* between matter and mind, with different tools applicable at different points on the spectrum. He emphasizes the need for empirical research to determine which tools are appropriate for which systems.
  • This idea goes against how many scientists currently try to delineate between consciousness versus no-consciousness or life versus non-life and living cells vs non-living cells.

Consciousness and Action

  • Levin prioritizes studying observable, functional behavior (problem-solving, intelligent behavior) before tackling the “hard problem” of consciousness.
  • He suggests that while the *sensory* aspect of consciousness (what it *feels like*) is important, the *actuation* aspect (what it’s *like to do*) is often underemphasized.
  • He points out the asymmetry in theories of mind: Epiphenomenalism posits real sensory states but denies their causal efficacy. There’s no common equivalent view denying the reality of sensation but affirming the reality of free will (action).
  • The need to act – to choose a *next action* – is fundamental to being an agent and defining the boundary between self and the outside world.
  • Levin is currently working on writing about consciousness, planning to address these ideas more directly in the future (likely in 2024). He believes studying consciousness directly *changes* the observer (it’s not purely third-person research).
  • He says it is likely there is no definition for consciousness.

TAME and Relationships, Not Just Control

  • TAME (Technological Approach to Mind Everywhere) is an *engineering* framework. Engineering prioritizes control (predicting and controlling a system).
  • TAME 2.0 is in development, to quantitatively flesh out the “cognitive light cone” concept.
  • Control may be thought of with the engineering aspects of TAME in mind.
  • Beyond control, relationships are important. With more complex agents (further right on the spectrum), interaction becomes bi-directional, not just one-way control. The appropriate “way to relate” changes.
  • “Proof of humanity” certificates (relevant in the age of AI) might ideally guarantee a certain *capacity for compassion*, an alignment of “cognitive light cones” – caring about the same scope of things.
  • People often think of anatomy or genome to verify humanity but that does not necessarily give people compatibility.
  • Compatibility might be about shared existential concerns (the challenges faced in existing) more than shared anatomy or genome.
  • He proposes that a compatible match in this framework, between a set of humans and a machine in this example, it requires at minimum some alignment.

Teleology, Evolution, and the “Meaning of Life”

  • A major concern with AI/technology is that we might be superseded. But this concept already exists: our kids/children. This concept has been long established and realized.
  • Teleophobia: Many scientists avoid discussing goals or purpose (teleology), often seeing it as unscientific or pre-scientific.
  • Levin argues teleology is acceptable now that we have cybernetics and control theory – a science of machines with goals (e.g., a thermostat).
  • These help deal with goals mathematically.
  • He uses *teleonomy* to emphasize that goal-directedness is *apparent* – it’s a *lens* from the perspective of an observer, a hypothesis to be tested.
  • Levin supports a form of panpsychism that reformulates basic physics as a proto-cognitive process (akin to ideas of Chris Fields and Karl Friston) – a deeper reality underlying both simple systems and complex minds.
  • Levin supports the idea there may exist ‘proto-cognitive processes.’
  • He requires this to contain ’empirical evidence’ that explains ‘the underlying system’.
  • He believes biological evolution doesn’t optimize for things humans value (happiness, meaning, etc.); it’s a random search, settling on what’s “good enough” to survive, increasing biomass.

Additional Points

  • Levin believes biology is incredibly adaptable and, with some help, humans will likely be able to live in environments like Mars.
  • All intelligence is collective, meaning no complex agent could have learning capacity because the agents of their individual components make that possible and are fundamental to cognition and processing information.
  • Levin sees phase transitions (in biology, and elsewhere) as partly dependent on the perspective/formalism used, and the time scale considered. They might *appear* sharp at one level but be smooth transitions at a finer level.
  • He has no direct evidence for other organs using language in the same complex, formal way as the brain.
  • The way orthopeadic surgeons use tools during orthopeadic procedures show a certain “mechanical aspect” of the human body.
  • He is excited about ongoing empirical work in limb regeneration (currently in mice), bioelectric approaches to cancer, and work on synthetic organisms.
  • A self may be defined by a model.
  • He views humans as “amazing, remarkable, ethically important, morally valuable, spiritual machines.”
  • Levin emphasizes the importance of thick skin and focusing on one’s own goals in navigating the sometimes hostile environment of academic science, especially when pursuing unconventional ideas.
  • There exists a concept of Metacognition all the way down which is useful.
  • “Where do I end and the outside world begin?” may provide utility in conceptualising the human body and it’s function.
  • Nested hierachies which have smaller and less complex agents as parts allow a more-complete entity/body to thrive.
  • He notes “you should get better as you get older”.

囚徒困境与自我的计算边界

  • 传统的囚徒困境模拟具有固定数量的参与者,他们可以选择合作或背叛。
  • 生物学更为复杂:生物实体(细胞、组织等)可以合并和分裂,改变“参与者”的数量,从而改变收益矩阵。这引入了标准模型中不存在的动态方面。
  • 合并提供了好处,特别是在代谢数据的转移和擦除个人“记忆”的能力方面,这提供了群体利益。
  • 莱文的自我计算边界是一个框架,用于在单一尺度上理解各种智能,无论大脑结构、环境或尺度(从分子到行星)。
  • 核心思想:所有智能体都具有追求目标的能力,有些简单,有些复杂。
  • 该框架根据智能体可以追求的最大目标(其“认知光锥”)的大小(在空间和时间上)来映射智能体。细菌的目标可能是局部糖浓度;人类的目标可能是世界和平。
  • 该框架是为实证研究而设计的:它允许对智能体的目标、其运作的问题空间及其能力(它实现目标的程度)进行可测试的假设。

多元智能、认知自然化和反对意见

  • 多元智能的目标*不是*拟人化,而是*自然化*认知。理解狭隘的、以人类为中心的定义之外的思维过程。
  • 莱文的观点受到还原论者(他们不喜欢自主性语言)和有机论者(他们不喜欢将机器与生物放在同一光谱上)的批评。
  • 还原论者通常主张在分子水平上进行解释,并将自主性言论视为前科学的。
  • 有机论者通常希望在机器和生物体之间划清界限,担心失去对生命的尊重。
  • 莱文主张物质和心灵之间的*连续体*,不同的工具适用于光谱上的不同点。他强调需要实证研究来确定哪些工具适用于哪些系统。
  • 这个想法与许多科学家目前试图区分意识与非意识、生命与非生命以及活细胞与非活细胞的方式背道而驰。

意识与行动

  • 莱文优先研究可观察的功能行为(解决问题、智能行为),然后再解决意识的“难题”。
  • 他认为,虽然意识的*感官*方面(它的*感觉*是什么)很重要,但*行动*方面(它的*行动起来*是什么样子)常常被低估。
  • 他指出了心灵理论中的不对称性:副现象论假定真实的感官状态,但否认它们的因果效力。没有常见的等效观点否认感觉的现实性,但肯定自由意志(行动)的现实性。
  • 行动的需要——选择一个*下一个行动*——是成为一个主体并定义自我与外部世界之间界限的基础。
  • 莱文目前正在撰写关于意识的文章,计划在未来(可能在 2024 年)更直接地解决这些想法。他认为直接研究意识会*改变*观察者(这不仅仅是第三人称研究)。
  • 他说意识可能没有定义。

TAME 与关系,不仅仅是控制

  • TAME(无处不在的心智技术方法)是一个*工程*框架。工程优先考虑控制(预测和控制系统)。
  • TAME 2.0 正在开发中,以定量地充实“认知光锥”概念。
  • 可以从 TAME 的工程方面考虑控制。
  • 除了控制之外,关系也很重要。对于更复杂的智能体(在光谱上更靠右),交互变得双向,而不仅仅是单向控制。适当的“关联方式”会发生变化。
  • “人类证明”证书(在人工智能时代相关)可能理想地保证一定的*同情能力*,即“认知光锥”的对齐——关心相同范围的事物。
  • 人们通常认为解剖学或基因组可以验证人性,但这并不一定能让人类彼此相容。
  • 相容性可能更多的是关于共同的存在关注(存在的挑战),而不是共同的解剖结构或基因组。
  • 他提出,在这个框架中,一组人类和一台机器之间的兼容匹配,在这个例子中,至少需要一些对齐。

目的论、进化和“生命的意义”

  • 人工智能/技术的一个主要担忧是我们可能会被取代。但这个概念已经存在:我们的孩子/后代。这个概念早已确立并实现。
  • 目的恐惧症:许多科学家避免讨论目标或目的(目的论),通常认为它是不科学的或前科学的。
  • 莱文认为,既然我们有了控制论和控制理论——一门关于具有目标的机器的科学(例如,恒温器),目的论是可以接受的。
  • 这些有助于用数学方法处理目标。
  • 他使用*目的论*来强调目标导向是*明显的*——它是观察者视角中的一个*透镜*,一个有待检验的假设。
  • 莱文支持一种泛灵论的形式,它将基础物理学重新表述为一种原认知过程(类似于 Chris Fields 和 Karl Friston 的思想)——一种更深层的现实,是简单系统和复杂心灵的基础。
  • 莱文支持可能存在“原认知过程”的观点。
  • 他要求这包含解释“底层系统”的“经验证据”。
  • 他认为生物进化并不针对人类重视的事物(幸福、意义等)进行优化;这是一种随机搜索,满足于“足够好”以生存,增加生物量。

补充要点

  • 莱文认为生物学具有极强的适应性,并且在一些帮助下,人类很可能能够在火星等环境中生存。
  • 所有智能都是集体的,这意味着没有复杂的智能体可以具有学习能力,因为它们各个组成部分的智能体使这成为可能,并且是认知和处理信息的基础。
  • 莱文认为相变(在生物学和其他地方)部分取决于所使用的视角/形式主义以及所考虑的时间尺度。它们可能在一个级别上*出现*尖锐,但在更精细的级别上是平滑的过渡。
  • 他没有直接证据表明其他器官像大脑一样以复杂、正式的方式使用语言。
  • 骨科医生在骨科手术中使用工具的方式显示了人体的某种“机械方面”。
  • 他对正在进行的肢体再生(目前在小鼠身上)、癌症的生物电方法以及合成生物体方面的工作感到兴奋。
  • 自我可以由模型定义。
  • 他将人类视为“令人惊叹、非凡、具有伦理重要性、道德价值的精神机器”。
  • 莱文强调了在学术科学有时充满敌意的环境中,要有厚脸皮并专注于自己的目标的重要性,特别是在追求非常规想法时。
  • 存在一个一直向下延伸的元认知概念,它很有用。
  • “我在哪里结束,外部世界从哪里开始?”可能有助于概念化人体及其功能。
  • 具有更小、更不复杂的智能体作为部分的嵌套层次结构允许更完整的实体/身体茁壮成长。
  • 他指出“随着年龄的增长,你应该变得更好”。