Michael Levin Bioelectricity 101 Crash Course Lesson 43: The Bioelectric Frontier: Unanswered Questions and Future Research Summary
- The field of bioelectricity is still in its early stages, with many fundamental questions remaining unanswered.
- The Bioelectric Code: A major challenge is to fully “crack” the bioelectric code – to understand precisely how voltage patterns encode information about anatomical structure and cell behavior. How to “read and write” to memory and tissue-level computation is a prime direction
- Multiscale Integration: How do bioelectric signals interact with other signaling pathways (chemical, mechanical, genetic) across different scales, from molecules to whole organisms?
- Basal Cognition: What are the limits of information processing and decision-making in non-neural cells and tissues? How does this relate to concepts like agency and consciousness?
- Evolutionary Origins: How did bioelectric signaling evolve? What role did it play in the origin of multicellularity and the evolution of body plans?
- Therapeutic Applications: Can we develop reliable and safe bioelectric interventions for a wide range of diseases and injuries? What are the best delivery methods?
- Synthetic Morphology: Can we design and build entirely new biological structures, “living machines,” guided by bioelectric principles?
- Computational Modeling: Can we create accurate computational models of bioelectric networks that predict their behavior and allow us to design interventions rationally?
- Technological Advances: New tools are needed for measuring and manipulating bioelectrical signals with greater precision and at multiple scales simultaneously.
Michael Levin Bioelectricity 101 Crash Course Lesson 43: The Bioelectric Frontier: Unanswered Questions and Future Research
We’ve reached the culmination of our bioelectricity crash course, having journeyed from the fundamental principles of ion channels and membrane potentials to the complex dynamics of regeneration, the concept of the Anatomical Compiler, and even the speculative realm of Somatic Psychiatry. Throughout this exploration, we’ve seen how bioelectricity is revolutionizing our understanding of life, offering a new perspective on development, healing, and the very nature of biological form and function.
But it’s crucial to remember that this field is still in its infancy. For every question we’ve answered, many more remain. The “bioelectric frontier” is vast and largely unexplored, beckoning researchers with the promise of profound discoveries and transformative applications. This lesson is not an ending, but a beginning – a roadmap to the exciting challenges and opportunities that lie ahead.
Let’s outline some of the key unanswered questions and future research directions:
- Cracking the Bioelectric Code: The Rosetta Stone of Life:
We know that bioelectric signals, particularly steady-state voltage gradients, carry information that influences cell behavior and guides development and regeneration. We’ve seen examples of this in planarian regeneration, frog limb regrowth, and even cancer normalization. But we don’t yet have a complete “dictionary” to translate these electrical patterns into specific biological outcomes.
Imagine trying to decipher an alien language. You might observe that certain sounds are associated with certain actions, but you wouldn’t understand the underlying grammar or the meaning of individual words. That’s where we are with the bioelectric code. We can manipulate it to some extent – we can change voltage patterns and observe the effects – but we don’t fully understand how those patterns encode information.
Future research will focus on:
- Mapping Voltage Patterns: Developing high-resolution techniques to map the spatial and temporal distribution of voltage gradients in different tissues and organisms, under various conditions (development, regeneration, disease).
- Correlating Patterns with Outcomes: Systematically correlating specific voltage patterns with specific biological outcomes (e.g., cell proliferation, differentiation, migration). This will require sophisticated experimental designs and data analysis techniques.
- Identifying “Bioelectric Motifs”: Searching for recurring patterns or “motifs” in the bioelectric code that are associated with specific developmental events or anatomical structures.
- Predictive Powers Being able to pre-calculate that, from some “x”, this exact voltage set “y” would induce desired “z”, rather than trying haphazard changes until results happen
Cracking the bioelectric code will be a monumental achievement, akin to deciphering the genetic code. It will give us unprecedented power to understand and control biological processes.
- Multiscale Integration: The Symphony of Signals:
Bioelectricity doesn’t operate in isolation. It’s part of a complex, dynamic interplay of signals – chemical, mechanical, genetic – that orchestrate life. These signals interact across multiple scales, from individual molecules to entire organisms.
Future research will need to unravel this “symphony of signals,” addressing questions like:
- How do bioelectric signals influence gene expression, and vice versa? We know there’s a two-way relationship, but we need to understand the specific molecular mechanisms involved.
- How do mechanical forces (tension, pressure, shear stress) interact with bioelectric signals? Cells sense and respond to both electrical and mechanical cues, and these cues often work together.
- How do chemical gradients (morphogens, growth factors) influence bioelectric patterns, and vice versa? These two types of signals are often intertwined in complex feedback loops.
- What’s more “primary” signal? Although likely more interconnected, can precedence be given (where x might take the highest stage in “decision making”)?
- Are there still other signals, as of yet entirely unfound? Beyond Chemical, Bioelectric, Mechanical, and Genetics?
Understanding these multiscale interactions will be essential for developing effective bioelectric interventions. We need to know how changing the electrical landscape will affect other signaling pathways, and how to integrate bioelectric manipulations with other therapeutic approaches.
- Basal Cognition: The Limits of Cellular Intelligence:
We’ve introduced the concept of basal cognition – the idea that even non-neural cells exhibit a rudimentary form of intelligence, sensing their environment, processing information, and making decisions. This raises fascinating questions about the nature of intelligence itself, and the potential for distributed cognition in biological systems.
Future research will explore:
- What are the limits of information processing in single cells and tissues? Can they learn? Can they remember? Can they solve complex problems?
- How does basal cognition scale up from individual cells to tissues and organs? What are the principles of collective intelligence in biological systems?
- What is the relationship between basal cognition and more complex forms of cognition, like those found in the nervous system? Did the brain evolve from pre-existing bioelectric networks?
- Can new goals be given that the cellular agents have never, ever considered prior? Can new forms emerge? How does novelty play a role?
- Is “intelligence” a continuous range between life? Does every biological thing, via this process of communicating agents forming structures, contain it?
This line of inquiry has implications not only for biology but also for cognitive science, philosophy, and even artificial intelligence. It challenges our anthropocentric view of intelligence and suggests that “mind-like” properties may be far more widespread in nature than we previously thought.
- Evolutionary Origins: The Dawn of Electrical Life:
Bioelectric signaling is ancient. Even bacteria use ion channels and membrane potentials to sense and respond to their environment. But how did this basic form of electrical communication evolve into the sophisticated bioelectric networks that guide development and regeneration in multicellular organisms?
Future research will address questions like:
- What role did bioelectricity play in the origin of multicellularity? Did electrical communication help early multicellular organisms coordinate their activities and form simple tissues?
- How did bioelectric signaling contribute to the evolution of different body plans? Did changes in bioelectric patterns drive the diversification of animal forms?
- Are there conserved bioelectric “modules” that are used repeatedly in different developmental contexts? Can we identify ancient bioelectric “programs” that have been repurposed and modified throughout evolution?
Understanding the evolutionary history of bioelectricity will shed light on the fundamental principles of biological organization and the constraints and possibilities of evolution.
- Therapeutic Applications: From Bench to Bedside:
The potential therapeutic applications of bioelectricity are vast, as we’ve discussed. But turning this potential into reality will require significant effort.
Future research will focus on:
- Developing reliable and safe methods for manipulating bioelectric signals in vivo. This will require advances in bioelectronics, microfluidics, and other technologies.
- Identifying specific bioelectric targets for different diseases and injuries. We need to know which ion channels to modulate, which voltage gradients to alter, and which gap junctions to open or close to achieve specific therapeutic effects.
- Conducting preclinical and clinical trials to test the efficacy and safety of bioelectric interventions. This will be a long and rigorous process, but it’s essential for bringing these therapies to patients.
- Developing standards. To have “reliable manipulation”, an agreed language, concepts, and procedures need to be standardized for easier use
The transition from laboratory research to clinical application is always challenging, but the potential rewards of bioelectric medicine are enormous.
- Synthetic Morphology: Building New Life Forms:
If we can understand and control the bioelectric “code” that guides natural development, we could potentially design and build entirely new biological structures – “living machines” with novel forms and functions. This is the realm of synthetic morphology, a field that blends biology, engineering, and computer science.
Future research will explore:
- Developing computational models of bioelectric networks that can predict their behavior and guide the design of new structures.
- Creating “libraries” of bioelectric components (ion channels, gap junctions, etc.) that can be combined in different ways to achieve specific outcomes.
- Exploring the “morphospace” of possible biological forms – the range of structures that can be created by manipulating bioelectric signals.
- Engineering biobots Creating them from various living cells. To study not only behaviors but capacities.
This field is still in its very early stages, but it has the potential to revolutionize our relationship with the living world, allowing us to create new forms of life for a variety of purposes.
- Advancing Methods and Technology: To truly study the complex, often faint signals involved, requires new equipment. It is difficult to manage them with high level of both accuracy as well as doing at a tissue wide level. Progress can proceed as better recording and manipulation becomes more commonplace.
In conclusion, despite all the advancements in study on what bioelectricity is, does, how we may work alongside to affect change, questions and avenues of potential work abound. It includes various fundamental research programs spanning from model, to evolution, medicine, to computer modeling to create accurate in-silicon version. To advance work will necessitate great interdisplincary collaboration. Only such an approach may, at last, yield total grasp over Bioelectricity
Michael Levin Bioelectricity 101 Crash Course Lesson 43: The Bioelectric Frontier: Unanswered Questions and Future Research Quiz
1. What is one significant obstacle still, with full certainty, preventing the simple creation of entire new biological tissues?
A) How precisely voltage configurations encode growth changes, ie, the “code”, and the best manner to create signals that would make use of this “language”.
B) The problem with ion channels blocking everything.
C) The impossibility to change or manage any tissue development beyond a certain level, whatsoever, without a supercomputer.
D) None of the above.
2. “Multiscale Integration” studies…:
A) …If only electrical signaling may suffice.
B) …only the interaction within the molecular stage, like between voltage differences and mRNA .
C) …only the large-scale issues.
D) …everything from physical signals to electrical to chemical signals, all acting on different levels, across all magnitudes of a living structure, to see how bioelectricity integrates among those varied factors .
3. “Basal Cognition” helps explain:
A) How electrical gradients appear on a 2D scan
B) How collective action as goal oriented tissue may arise via cellular mini “agents” performing basal, primitive intelligence on various, varied information.
C) Why genetics cannot work.
D) Only how memory works .
4. Bioelectricity has always existed:
A) No, animals just now have begun making voltage charges within and between tissues. It never did before .
B) The idea never gets explored.
C) Even on unicellular bacteria and earlier organisms have ions and electrics.
D) It relates to bioethics
5. The ultimate and key aim, in applying bioelectricity, is :
A) Bioethical debates .
B) Purely the study of electric signals
C) Working with nature rather than full top-down domination: being able to understand enough and *negotiate* so cells do not fight, instead helping life in a less destructive way, fixing not through “fighting”, “brute forcing” issues out.
D) Genetic change only.
6. What technology can *directly* visualize, track bioelectricity?:
A) mRNA
B) Gene Expressions
C) Voltage-Sensitive Dyes.
D) Action potentials alone
7. Can we currently engineer, at a distance without invasive surgery, at scale, consistent and very targeted electrical alterations?
A) Yes
B) No
C) Somatic-Psychiatry principles makes it trivial.
D) The field is perfect, without any remaining challenges.
8. Bioelectricity research represents which future goal?
A) Conceptual and theoretical revolutions.
B) Advancing techniques and measurement tool.
C) Integrating different sciences, and creating cross-disciplinary new ideas to bear, at a “meta-level” from chemistry all the way to psychology
D) All of the Above.
9. Future research may help study:
A) Tissue memory .
B) Novel biobots.
C) Bioethics
D) All of the Above .
10. One major issue of bioelectricity revolves what kind of information storage:
A) How bioelectrics and gene modification are mutually exclusive.
B) Short term storage, but not more, in basal-cognition setting.
C) How, what is informationally speaking, coded by gradients of bioelectrical values between groups of cells, forming persistent memories that influence cellular action
D) DNA.
11. Which represents an analogy often deployed to describe bioelectricity research, particularly to distinguish between conventional and more updated view :
A) Gene vs Action Potentials.
B) Top down vs. bottom up organization
C) Chemical Gradients alone explaining everything.
D) Hardware-Software
12. One technology to *deliver*, but not *create* Bioelectric changes involves..
A) Dyes
B) Gene therapies to fully alter biology
C) Ion Channel Modulators (whether in medicine form or as externally worn on tissue contact to deliver short boosts)
D) Chemicals .
13. A promising route in future involves:
A) Genetic, to study genes and proteins to alter via removal
B) Using drugs or nanobots
C) Somatic, target driven influence towards tissues rather than total management
D) A, and C
14. “Synthetic morphology” focuses on which?
A) Only regeneration as observed via Planaria B) Creating tissues “de novo”, with properties different from usual ones that occurs in species, testing out life C) Applying engineering concepts into psychology, D) The idea of robots as pure, electrical machines.
15. An “alien” or “cryptic” phenotype best refers to:
A) Something outside genetics
B) How two headed worms work
C) Surprising changes to biological shape
D) C and B, but mostly B in the long run of regeneration.
16. Can the process of cracking a Bioelectric Code be modeled in computers or not yet?
A) Not Yet .
B) Maybe, it would be very useful if they could model voltage changes
C) Somatic Principles means bioelectrics is just pure “mind magic” without matter involvement.
D) B, C.
17. The field needs:
A) Integration, across various specializations (interdisciplinary).
B) To keep expanding into as many new questions as possible
C) For technology to improve to allow higher fidelity measurement
D) All of the Above .
18. Bioelectricity holds what implications?
A) Pure Theory.
B) Pure Application.
C) Revolutions spanning how we understand cells, animals, information; what future may see as better control over development; implications from biology to evolution, the limits and “cognitive scope” that life have access; technological changes towards synthetic morphology and engineered robots from organic origins; and finally better tools to help accomplish these.
D) Pure Ethics.
19. Does bioelectricity as is stands now, *fully* address what Anthrobots does or why, such as explaining what induced the tissues bridge and restoration in previous section?:
A) Yes.
B) Maybe but the process to fully link these remain murky: we saw *something* worked; now, how it did, can be subject of intensive efforts to define exact biophysical mechanism at hand. Future machine learning may prove helpful.
C) Anthrobot itself, to move, and work, is an extremely complex, little understood event
D)B and C.
20. Which is likely: bioelectricity only relates to information inside cell alone or tissues also ?
A) Cells
B) Tissues and collective .
C) Information isn’t important in discussing about bioelectrics.
D) Neither
Michael Levin Bioelectricity 101 Crash Course Lesson 43: The Bioelectric Frontier: Unanswered Questions and Future Research Answer Sheet
1. A
2. D
3. B
4. C
5. C
6. C
7. B
8. D
9. D
10. C
11. D
12. C
13. D
14. B
15. D
16. B
17. D
18. C
19. D
20. B
迈克尔·莱文 生物电 101 速成课程 第43课:生物电前沿:未解之谜与未来研究 摘要
- 生物电领域仍处于早期阶段,许多基本问题仍未得到解答。
- 生物电密码:一个主要的挑战是完全“破解”生物电密码——准确理解电压模式如何编码有关解剖结构和细胞行为的信息。 如何“读写”记忆和组织水平的计算是主要的方向
- 多尺度整合:生物电信号如何与不同尺度(从分子到整个生物体)的其他信号通路(化学、机械、遗传)相互作用?
- 基础认知:非神经细胞和组织中信息处理和决策的极限是什么? 这与能动性和意识等概念有什么关系?
- 进化起源:生物电信号是如何进化的? 它在多细胞生物的起源和体型进化中发挥了什么作用?
- 治疗应用:我们能否开发出可靠且安全的生物电干预措施来治疗各种疾病和损伤? 最佳的递送方法是什么?
- 合成形态学:我们能否在生物电原理的指导下设计和构建全新的生物结构——“活机器”?
- 计算建模:我们能否创建准确的生物电网络计算模型来预测其行为并允许我们合理地设计干预措施?
- 技术进步:需要新工具来更精确地同时在多个尺度上测量和操纵生物电信号。
迈克尔·莱文 生物电 101 速成课程 第43课:生物电前沿:未解之谜与未来研究
我们已经完成了生物电速成课程的总结,从离子通道和膜电位的基本原理,到再生、解剖编译器概念,甚至体细胞精神病学的推测领域的复杂动力学。 在整个探索过程中,我们已经看到生物电如何彻底改变我们对生命的理解,为发育、愈合以及生物形态和功能的本质提供了一个新的视角。
但重要的是要记住,这个领域仍然处于起步阶段。 对于我们已经回答的每一个问题,还有更多的问题仍未得到解答。 “生物电前沿”广阔且基本上尚未开发,以深刻的发现和变革性应用的承诺吸引着研究人员。 这节课不是结束,而是开始——通往未来令人兴奋的挑战和机遇的路线图。
让我们概述一些关键的未解之谜和未来的研究方向:
- 破解生物电密码:生命的罗塞塔石碑:
我们知道生物电信号,特别是稳态电压梯度,携带信息,影响细胞行为并指导发育和再生。 我们已经在涡虫再生、青蛙肢体再生甚至癌症正常化中看到了这方面的例子。 但我们还没有完整的“词典”来将这些电模式转化为特定的生物学结果。
想象一下试图破译一种外星语言。 你可能会观察到某些声音与某些动作相关联,但你不了解其底层语法或单个单词的含义。 这就是我们对生物电密码的了解。 我们可以在某种程度上操纵它——我们可以改变电压模式并观察其影响——但我们并不完全理解这些模式如何编码信息。
未来的研究将侧重于:
- 绘制电压模式图:开发高分辨率技术来绘制不同组织和生物体中电压梯度在各种条件(发育、再生、疾病)下的空间和时间分布。
- 将模式与结果相关联:系统地将特定电压模式与特定生物学结果(例如,细胞增殖、分化、迁移)相关联。 这将需要复杂的实验设计和数据分析技术。
- 识别“生物电基序”:搜索生物电密码中与特定发育事件或解剖结构相关的重复模式或“基序”。
- 预测能力 能够预先计算出,从某个“x”,这个精确的电压集“y”会诱导所需的“z”,而不是尝试随机变化直到发生结果
破解生物电密码将是一项巨大的成就,类似于破译遗传密码。 它将赋予我们前所未有的力量来理解和控制生物过程。
- 多尺度整合:信号的交响乐:
生物电不是孤立运作的。 它是信号(化学、机械、遗传)复杂、动态相互作用的一部分,这些信号协调着生命。 这些信号跨越多个尺度相互作用,从单个分子到整个生物体。
未来的研究将需要解开这种“信号交响乐”,解决以下问题:
- 生物电信号如何影响基因表达,反之亦然? 我们知道存在双向关系,但我们需要了解所涉及的具体分子机制。
- 机械力(张力、压力、剪切应力)如何与生物电信号相互作用? 细胞感知并响应电和机械线索,这些线索通常协同作用。
- 化学梯度(形态发生素、生长因子)如何影响生物电模式,反之亦然? 这两种类型的信号通常交织在复杂的反馈回路中。
- 什么是更“主要”的信号? 尽管可能更相互关联,但能否给出优先级(其中 x 可能在“决策”中占据最高阶段)?
- 是否还有其他信号,迄今为止完全没有发现? 超越化学、生物电、机械和遗传?
了解这些多尺度相互作用对于开发有效的生物电干预措施至关重要。 我们需要知道改变电景观将如何影响其他信号通路,以及如何将生物电操作与其他治疗方法相结合。
- 基础认知:细胞智能的极限:
我们已经介绍了基础认知的概念——即使是非神经细胞也表现出基本形式的智能,感知环境、处理信息和做出决策。 这引发了关于智能本身性质以及生物系统中分布式认知潜力的有趣问题。
未来的研究将探索:
- 单细胞和组织中信息处理的极限是什么? 它们能学习吗? 它们能记住吗? 它们能解决复杂的问题吗?
- 基础认知如何从单个细胞扩展到组织和器官? 生物系统中集体智慧的原则是什么?
- 基础认知与更复杂形式的认知(如神经系统中的认知)之间有什么关系? 大脑是从预先存在的生物电网络进化而来的吗?
- 是否可以赋予细胞主体从未考虑过的新目标? 是否会出现新形式? 新奇事物如何发挥作用?
- “智能”是生命之间的连续范围吗? 是否每个生物体都通过这个交流主体形成结构的过程包含它?
这一研究方向不仅对生物学,而且对认知科学、哲学甚至人工智能都有影响。 它挑战了我们以人类为中心的智力观,并表明“类精神”属性可能比我们之前认为的在自然界中更为普遍。
- 进化起源:电生命的黎明:
生物电信号是古老的。 甚至细菌也使用离子通道和膜电位来感知和响应其环境。 但是,这种基本的电通信形式是如何演变成指导多细胞生物发育和再生的复杂生物电网络的呢?
未来的研究将解决以下问题:
- 生物电在多细胞生物的起源中发挥了什么作用? 电通信是否帮助早期多细胞生物协调其活动并形成简单的组织?
- 生物电信号如何促进不同体型的进化? 生物电模式的变化是否推动了动物形态的多样化?
- 是否存在在不同发育环境中重复使用的保守生物电“模块”? 我们能否识别出在整个进化过程中被重新利用和修改的古老生物电“程序”?
了解生物电的进化史将阐明生物组织的基本原理以及进化的约束和可能性。
- 治疗应用:从实验室到临床:
正如我们所讨论的,生物电的潜在治疗应用是巨大的。 但是,将这种潜力转化为现实需要付出巨大的努力。
未来的研究将侧重于:
- 开发可靠且安全的体内操纵生物电信号的方法。 这将需要生物电子学、微流体和其他技术的进步。
- 确定不同疾病和损伤的具体生物电靶标。 我们需要知道要调节哪些离子通道,要改变哪些电压梯度,以及要打开或关闭哪些间隙连接以实现特定的治疗效果。
- 进行临床前和临床试验以测试生物电干预措施的有效性和安全性。 这将是一个漫长而严格的过程,但对于将这些疗法带给患者至关重要。
- 制定标准。 为了实现“可靠的操纵”,需要对商定的语言、概念和程序进行标准化,以便于使用
从实验室研究到临床应用的过渡总是具有挑战性的,但生物电医学的潜在回报是巨大的。
- 合成形态学:构建新生命形式:
如果我们能够理解和控制指导自然发育的生物电“密码”,我们就有可能设计和构建全新的生物结构——具有新颖形式和功能的“活机器”。 这是合成形态学的领域,一个融合了生物学、工程学和计算机科学的领域。
未来的研究将探索:
- 开发生物电网络的计算模型,可以预测其行为并指导新结构的设计。
- 创建生物电组件(离子通道、间隙连接等)的“库”,这些组件可以以不同的方式组合以实现特定结果。
- 探索可能的生物形式的“形态空间”——通过操纵生物电信号可以创建的结构范围。
- 工程生物机器人 用各种活细胞制造它们。 不仅要研究行为,还要研究能力。
这个领域还处于非常早期的阶段,但它有可能彻底改变我们与生物世界的关系,使我们能够创造出具有各种用途的新生命形式。
- 推进方法和技术:要真正研究复杂、通常微弱的信号,需要新设备。难以既高精度又在组织范围内对信号进行管理。 随着更好的记录和操作变得更加普遍,进展可以继续。
总而言之,尽管在研究生物电是什么、做什么、我们如何与之合作以影响变化方面取得了所有进展,但问题和潜在的工作途径比比皆是。 它包括从模型到进化、医学、计算机建模等各种基础研究项目,以创建准确的硅版本。 为了推进工作,将需要巨大的跨学科合作。 只有这样一种方法才能最终完全掌握生物电
迈克尔·莱文 生物电 101 速成课程 第43课:生物电前沿:未解之谜与未来研究 小测验
1. 目前,有一个重大障碍仍然阻碍着全新生物组织的简单创造,具有完全的确定性,是什么?
A) 电压配置究竟如何编码生长变化,即“密码”,以及利用这种“语言”产生信号的最佳方式。
B) 离子通道阻止一切的问题。
C) 如果没有超级计算机,就不可能改变或管理任何超过一定水平的组织发育。
D) 以上都不是。
2. “多尺度整合”研究……:
A) …如果只有电信号就足够了。
B) …仅在分子阶段内的相互作用,如电压差和 mRNA 之间。
C) …只有大尺度问题。
D) …从物理信号到电信号再到化学信号,所有作用于不同水平的信号,跨越生命结构的所有大小,以了解生物电如何在这些不同的因素中整合。
3. “基础认知”有助于解释:
A) 电梯度如何出现在二维扫描中
B) 作为目标导向组织的集体行动如何通过细胞微型“主体”在各种不同的信息上执行基本的、原始的智能而产生。
C) 为什么遗传学不起作用。
D) 只有记忆如何运作
4. 生物电一直存在:
A) 不,动物现在才开始在组织内部和组织之间产生电压电荷。 以前从未有过。
B) 这个想法从未被探索过。
C) 即使在单细胞细菌和更早的生物体中也有离子和电。
D) 它与生物伦理学有关
5. 应用生物电的最终和关键目标是:
A) 生物伦理学辩论。
B) 纯粹是对电信号的研究
C) 与自然合作而不是完全自上而下的支配:能够充分理解和“协商”,使细胞不反抗,而是以破坏性较小的方式帮助生命,不是通过“对抗”、“强迫”来解决问题,而是消除问题。
D) 仅基因改变。
6. 什么技术可以*直接*可视化、跟踪生物电?:
A) mRNA
B) 基因表达
C) 电压敏感染料。
D) 仅动作电位
7. 我们目前能否在远处进行大规模、无创手术、一致且非常有针对性的电改变?
A) 能
B) 不能
C) 体细胞精神病学原理使其变得微不足道。
D) 该领域是完美的,没有任何剩余的挑战。
8. 生物电研究代表了哪个未来目标?
A) 概念和理论革命。
B) 推进技术和测量工具。
C) 整合不同的科学,并在从化学到心理学的“元层面”上提出跨学科的新想法
D) 以上都是。
9. 未来的研究可能有助于研究:
A) 组织记忆。
B) 新型生物机器人。
C) 生物伦理学
D) 以上都是。
10. 生物电的主要问题之一涉及哪种信息存储:
A) 生物电学和基因改造是如何相互排斥的。
B) 基础认知环境中的短期存储,但不能更长。
C) 电压梯度如何通过细胞群编码信息,形成影响细胞行为的持久记忆
D) DNA。
11. 哪个代表了经常用来描述生物电研究的比喻,特别是区分传统观点和更新观点:
A) 基因与动作电位。
B) 自上而下与自下而上的组织
C) 仅化学梯度就能解释一切。
D) 硬件-软件
12. 一种*提供*而不是*产生*生物电变化的技术涉及..
A) 染料
B) 通过基因疗法完全改变生物学
C) 离子通道调节剂(无论是药物形式还是作为外部佩戴在组织接触上以提供短时增强)
D) 化学品。
13. 未来的一条有希望的途径包括:
A) 遗传学,研究基因和蛋白质以通过去除来改变
B)使用药物或者纳米机器人
C)以目标为导向影响组织走向,而非总体管理
D)A, 和 C
14. “合成形态学”侧重于哪一项?
A)仅关注通过Planaria观察到的再生 B)从头创建组织,具有不同于物种中通常发生的属性,测试生命 C)将工程概念应用于心理学, D)机器人的概念是纯粹的,电机。
15. “外星”或“神秘”表型最好指:
A) 遗传学之外的东西
B) 双头蠕虫如何工作
C) 生物形状的惊人变化
D) C 和 B,但从长远来看,主要是 B。
16. 破译生物电密码的过程能否在计算机中建模,或者还不能?
A) 还不行。
B) 也许吧,如果他们能模拟电压变化,那将非常有用
C) 体细胞原理意味着生物电只是纯粹的“精神魔法”,没有物质参与。
D) B、C。
17. 该领域需要:
A) 整合,跨越各种专业(跨学科)。
B) 继续扩展到尽可能多的新问题
C) 改进技术以实现更高保真度的测量
D) 以上都是。
18. 生物电有哪些含义?
A) 纯理论。
B) 纯应用。
C) 跨越我们如何理解细胞、动物、信息的革命; 未来可能会更好地控制发展; 从生物学到进化,生命所具有的极限和“认知范围”的影响; 迈向合成形态学和有机来源工程机器人的技术变革; 最后是帮助实现这些目标的更好工具。
D) 纯伦理。
19. 正如目前所知,生物电是否能*完全*解决 Anthrobots 的作用或原因,例如解释是什么诱导了上一节中的组织桥接和恢复?:
A) 是的。
B) 也许吧,但要完全联系这些仍然模糊不清:我们看到了*一些东西*起作用; 现在,它是如何做到的,可以成为确定手头确切生物物理机制的密集努力的主题。 未来的机器学习可能会有所帮助。
C) Anthrobot 本身的移动和工作是一个极其复杂、鲜为人知的事件
D)B 和 C。
20. 以下哪一项可能是正确的:生物电仅与细胞内的信息有关,还是也与组织有关?
A) 细胞
B)组织以及集合.
C)信息在讨论生物电学时不重要。
D)两个都不是
迈克尔·莱文 生物电 101 速成课程 第43课:生物电前沿:未解之谜与未来研究 答案表
1. A
2. D
3. B
4. C
5. C
6. C
7. B
8. D
9. D
10. C
11. D
12. C
13. D
14. B
15. D
16. B
17. D
18. C
19. D
20. B