Michael Levin Bioelectricity 101 Crash Course Lesson 42: Anthrobots: Human Cells Behaving in Completely Unexpected Ways

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 42: Anthrobots: Human Cells Behaving in Completely Unexpected Ways Summary

  • Anthrobots are multicellular structures created from adult human lung cells (tracheal epithelial cells) that self-assemble and exhibit motility.
  • They are not genetically modified; their novel behaviors emerge from altering their environment.
  • Anthrobots are a real-world example of the plasticity of somatic cells and a demonstration of principles discussed throughout the course (basal cognition, bioelectric control, anatomical compiler ideas).
  • They exhibit a range of morphologies (shapes) and movement types (circular, linear, etc.).
  • Remarkably, Anthrobots can promote the repair of damaged neuronal tissue in vitro, a completely unexpected behavior for lung cells.
  • This demonstrates that cells can exhibit surprising “competencies” outside of their normal developmental context.
  • Anthrobots are a platform for exploring the “latent space” of possible biological forms and functions.
  • This challenges traditional, reductionist views on biology (i.e, bottom-up determination of form solely by genes).
  • This also shows a novel method to potentially create personalized, medical tools to improve human health.

Michael Levin Bioelectricity 101 Crash Course Lesson 42: Anthrobots: Human Cells Behaving in Completely Unexpected Ways

Throughout this course, we’ve explored the fascinating world of bioelectricity, delving into how electrical signals influence cell behavior, guide development, and even play a role in cancer. We’ve discussed theoretical concepts like basal cognition and the anatomical compiler, imagining a future where we can “program” biological form and function. Now, we’re going to focus on a real-world example that brings many of these ideas to life: Anthrobots. These remarkable structures, created from adult human lung cells, demonstrate the incredible plasticity of cells and showcase the power of bioelectricity to unlock unexpected behaviors.

What are Anthrobots? They are tiny, multicellular “biobots” created in the lab, not by 3D printing or sculpting, but by coaxing cells to self-assemble into a new form. The starting material is normal human bronchial epithelial (NHBE) cells – the cells that line your airways. These are adult, somatic cells, not embryonic stem cells. And, crucially, they are not genetically modified. Their novel behaviors are not the result of introducing new genes; they emerge entirely from manipulating the cells’ environment.

This is a crucial point, and it connects directly to the core principles we’ve been discussing throughout this course. Remember the idea of basal cognition? Even non-neural cells have basic information-processing abilities. They can sense their environment, make decisions, and coordinate their actions with other cells. Anthrobots are a living, breathing (well, moving!) example of this principle in action.

The process of creating Anthrobots, developed by Dr. Gizem Gumuskaya and colleagues (as detailed in the research paper you mentioned) starts with isolating NHBE cells and culturing them in a special gel matrix (Matrigel). In this environment, the cells naturally form spheroids, but with the cilia (tiny, hair-like structures) facing inward, towards a central cavity. This is similar to their normal arrangement in the airways, where cilia help to clear mucus and debris.

Here’s where the magic happens. The researchers then dissolve the gel matrix, releasing the spheroids into a liquid environment. This seemingly simple change – removing the surrounding matrix – triggers a remarkable transformation. The cells reorganize. They flip their polarity, so that the cilia now face outward. And, most importantly, they start to move. These cilia-covered spheroids, now dubbed “Anthrobots,” propel themselves through the liquid, exhibiting a range of movement patterns.

The fact that they move at all is, if we think traditionally of biology, extraordinary. We expect simple ciliated movement inside lung organ tissues to help mucus transport: the coordinated wave is a “basic task”. Yet a reorganization outside what we take for granted to be “possible behavior”, driven entirely through ordinary cells, reveals an unusual potential even without tinkering with the “source code”!

The Anthrobots aren’t all identical. They exhibit a range of:

  • Shapes: Some are spherical, others are ellipsoidal (oval-shaped), and some are more irregular.
  • Cilia Distribution: Some have cilia evenly distributed across their surface, while others have cilia clustered in patches or aligned along a specific axis.
  • Movement Types: Some move in tight circles, others move in straight lines, some move in curved paths, and some exhibit a more erratic, “eclectic” movement.

Importantly, the researchers found a correlation between morphology (shape and cilia distribution) and movement type. For example, spherical Anthrobots with evenly distributed cilia tend to be either non-motile or to simply “wiggle” in place. Elongated Anthrobots with a more polarized cilia distribution are more likely to move linearly. This suggests that the cells are not just randomly assembling; their self-organization is influenced by biophysical cues, and the resulting structure dictates their function. They form specific shapes for specific tasks!

But the most astonishing finding, the one that truly highlights the unexpected capabilities of these cells, is their ability to repair damaged neuronal tissue. Remember, these are lung cells. Their normal job is to line the airways, not to interact with neurons. Yet, when placed on a scratched layer of cultured human neurons (an in vitro model of injury), the Anthrobots:

  • Move Across the Scratch: They actively migrate across the damaged area.
  • Promote Neuronal Regrowth: Remarkably, their presence stimulates the neurons to grow and “bridge” the gap created by the scratch. This is not a trivial effect; it’s a complex biological process that involves cell signaling, migration, and differentiation.
  • Not Just Mechanical: This isn’t simply due to the physical presence of the Anthrobots; placing an inert material on the scratch doesn’t have the same effect. Something about the Anthrobots, likely a combination of their movement, their cilia, and possibly secreted factors, is actively promoting neuronal repair.
  • “Superbots”: It was discovered if multiple individual “bots” were brought together, they will often fuse together — thus producing greater repair capacity and more robust, longer range of effect

This is a truly remarkable finding. It demonstrates that cells can exhibit surprising “competencies” outside of their normal developmental context. Lung cells, when given the opportunity, can interact with neurons in a beneficial way, promoting repair. This challenges the traditional, “reductionist” view of biology, where each cell type is seen as having a fixed, predetermined role. Instead, it suggests that cells are much more flexible and adaptive than we often assume.

The Anthrobot research is a beautiful illustration of the Anatomical Compiler concept, even though the Anatomical Compiler itself is still theoretical. The researchers didn’t directly “program” the Anthrobots to have specific shapes or behaviors. They didn’t use gene editing or insert detailed instructions into the cells. Instead, they manipulated the environment, providing the cells with cues that triggered their inherent self-organizing and problem-solving abilities. The cells, guided by bioelectric signals and other biophysical forces, essentially “compiled” themselves into a new form with unexpected functions.

Anthrobots are, quite literally, living proof that bioelectricity plays a central role in shaping biology. They represent more: a significant leap from what has been seen previously with xenobots: Anthrobots represent moving beyond amphibians; Anthrobots are made of fully adult mammalian somatic tissue and, Anthrobots’ own creation can take place in parallel, scaled with simplicity, from one cell to the many, with a method easily utilized. This opens possibilities for treatment using even the patient’s own cell, and the creation of “bots” of whatever “type” needed on demand!

Anthrobots are more than just a scientific curiosity. They are a powerful new platform for exploring the “latent space” of possible biological forms and functions. They provide a glimpse into a future where we can harness the inherent plasticity of cells to create living machines for a variety of applications, from regenerative medicine to environmental remediation. They are a testament to the power of basic research and the endless surprises that await us as we continue to explore the amazing world of bioelectricity.


Michael Levin Bioelectricity 101 Crash Course Lesson 42: Anthrobots: Human Cells Behaving in Completely Unexpected Ways Quiz

1. Anthrobots are made from:

A) Frog embryonic cells.
B) Genetically modified human cells.
C) Adult human lung cells.
D) Artificial materials coated with proteins.

2. The key to making Anthrobots motile is:

A) Inserting genes for flagella.
B) Altering the cells’ environment to induce cilia to face outward.
C) Applying an external electric field.
D) Adding chemical motors to the cells.

3. Which best captures and connects our bioelectricity studies to Anthrobots:
A) Understanding Morphogenesis
B) Basal Cognition
C) Bioelectric signaling principles.
D) All of the above.

4. True or False: The creation of functional Anthrobot structures must rely on careful, time intensive micro-management of specific positions of each cell in the aggregation

A) True.
B) False

5. Anthrobots exhibit a range of:

A) Only one shape and one movement type.
B) Different shapes and movement types.
C) Shapes, but all move in the same way.
D) Movement types, but all have the same shape.

6. The most surprising behavior of Anthrobots is their ability to:

A) Move in circles.
B) Self-assemble.
C) Promote the repair of damaged neuronal tissue.
D) Change their shape.

7. The neuronal repair observed with Anthrobots demonstrates:

A) The limited plasticity of adult cells.
B) That cells can exhibit unexpected competencies outside of their normal context.
C) That lung cells are identical to neurons.
D) That bioelectricity is irrelevant to cell behavior.

8. Anthrobots are a real-world example of:

A) The limitations of the gene-centric view of biology.
B) The potential of the Anatomical Compiler concept.
C) The power of basal cognition.
D) All of the above.

9. The surprising effect of helping other cells, as found, connect to:
A) That cells may have far less flexibility once developed
B) They “expand”, so to say, their behavior.
C) That the tissue might not accomplish certain medical applications that go beyond fixing tissues alone.
D) All of the above.

10. Anthrobots creation occurs via…

A) Molds and manual shaping.
B) Inserting genetic modification.
C) Bio-printing to carefully put cell-to-cell placement as with other robotics techniques.
D) Leveraging existing self-constructive tendencies within lung cells themselves.

11. True or False: The method to get biobots has the potential of “scaling up”.

A) True
B) False.

12. True or false: Because of a very “fixed”, pre-determined developmental, “locked-in”, result, biobots, at any form, will likely require top down instruction, instead of just changes to environments.
A) True
B) False

13. True or False: It’s simple, straightfoward task to induce, fully ex nihilo, structures, because Anthrobots represent an infinitely plastic medium

A) True.
B) False.

14. The shape and structure of the Anthrobot affect…

A) No change at all.
B) Movement type of Anthrobot.
C) Repair capability, if in groups
D) Both B and C

15. Which phrase most succinctly summarizes the main points about Anthrobots and why their discovery would make it an important breakthrough in biology.
A) Pre-programmed actions to fixed inputs
B) Unexpected emergence of competencies by normal body parts outside their “normal purpose”
C) A limited model where very little deviation may take place.
D) Pure randomness and no organization at all

16. Which aspect in their “source” are anthrobots different from xenobots?

A) They can be of genetically unmodfied, origin.
B) Adult human cells may also spontaneously arrange into a collective structure with movement.
C) A potential higher through-put for growing many structures.
D) All of the above

17. The movement form that the bot will take:

A) can’t be “predicted” by any factor: is completely, 100% unknown until the bots develop fully and begin displaying their capacities.
B) The final output of moving cells always depends solely on their cell source
C) Movement patterns such as moving circles and lines correlates, statistically significantly, to their morphology
D) Only depends on genetics.

18. Why do Anthrobots matter for Regenerative Medicine:

A) They showcase potential ways to utilize the intelligent collective action of tissue, to create novel structures for use as repair of damage.
B) This model allows the move away from chemical means to deal with diseases like cancer
C) Because their unusual behaviors allow the possibilities for “training”, steering, tissues.
D) All of the above

19. Which element in bioelectricity and biology are Anthrobots demonstrating, beyond just theory?

A) Emergent competency of cells
B) Anatomical Compiler as idea
C) Basal Cognition in the form of functional units
D) All of the above.

20. True or False — Anthrobots were tested on in vitro human monolayer neuron tissue: it can repair it and bridge breaks when formed in small colonies

A) True
B) False.


Michael Levin Bioelectricity 101 Crash Course Lesson 42: Anthrobots: Human Cells Behaving in Completely Unexpected Ways Answer Sheet

1. C

2. B

3. D

4. B

5. B

6. C

7. B

8. D

9. B

10. D

11. A

12. B

13. B

14. D

15. B

16. D

17. C

18. D

19. D

20. A


迈克尔·莱文 生物电 101 速成课程 第42课:Anthrobots:人类细胞表现出完全意想不到的行为 摘要

  • Anthrobots 是由成人肺细胞(气管上皮细胞)产生的多细胞结构,可自组装并表现出运动性。
  • 它们没有经过基因改造; 它们的新颖行为源于改变其环境。
  • Anthrobots 是体细胞可塑性的真实示例,也是整个课程中讨论的原理(基础认知、生物电控制、解剖编译器思想)的证明。
  • 它们表现出各种形态(形状)和运动类型(圆形、直线等)。
  • 值得注意的是,Anthrobots 可以在体外促进受损神经元组织的修复,这是肺细胞完全意想不到的行为。
  • 这表明细胞可以在其正常发育环境之外表现出令人惊讶的“能力”。
  • Anthrobots 是一个探索可能生物形式和功能“潜在空间”的平台。
  • 这挑战了传统的、还原论的生物学观点(即,形态仅由基因自下而上决定)。
  • 这也展示了一种可能创造个性化医疗工具来改善人类健康的新方法。

迈克尔·莱文 生物电 101 速成课程 第42课:Anthrobots:人类细胞表现出完全意想不到的行为

在整个课程中,我们一直在探索生物电的迷人世界,深入研究电信号如何影响细胞行为、指导发育,甚至在癌症中发挥作用。 我们讨论了基础认知和解剖编译器等理论概念,想象着一个我们可以“编程”生物形式和功能的未来。 现在,我们将重点关注一个真实的例子,它将许多这些想法变为现实:Anthrobots。 这些由成人肺细胞产生的非凡结构证明了细胞令人难以置信的可塑性,并展示了生物电解锁意想不到行为的力量。

什么是 Anthrobots? 它们是在实验室中产生的微小的多细胞“生物机器人”,不是通过 3D 打印或雕刻,而是通过诱导细胞自组装成新的形式。 起始材料是正常的人支气管上皮 (NHBE) 细胞——排列在您气道上的细胞。 这些是成人体细胞,而不是胚胎干细胞。 而且,至关重要的是,它们没有经过基因改造。 它们的新颖行为不是引入新基因的结果; 它们完全来自操纵细胞的环境

这是一个关键点,它直接关系到我们在整个课程中一直在讨论的核心原则。 还记得基础认知的概念吗? 即使是非神经细胞也具有基本的信息处理能力。 他们可以感知周围的环境,做出决定,并与其他细胞协调行动。 Anthrobots 是这个原则在行动中的一个活生生的、会呼吸的(嗯,会动的!)例子。

正如你提到的研究论文中详细介绍的那样,制造 Anthrobots 的过程由 Gizem Gumuskaya 博士及其同事开发,首先分离 NHBE 细胞并将它们培养在特殊的凝胶基质 (Matrigel) 中。 在这种环境中,细胞自然会形成球体,但纤毛(微小的毛发状结构)朝,朝向中心腔。 这类似于它们在气道中的正常排列,纤毛有助于清除粘液和碎片。

这就是神奇之处。 然后,研究人员溶解凝胶基质,将球体释放到液体环境中。 这个看似简单的变化——移除周围的基质——触发了一个非凡的转变。 细胞重新组织。 它们翻转极性,使纤毛现在朝。 而且,最重要的是,它们开始移动。 这些覆盖着纤毛的球体,现在被称为“Anthrobots”,推动自己在液体中前进,表现出一系列运动模式。

如果从传统的生物学角度考虑,它们能够移动这一事实本身就非同寻常. 我们通常期待在肺部组织的内部,可以见到细胞有纤毛摆动进行简单的运动, 来帮助粘液的输送,协调一致的摆动, 是一种基本的功能。 但完全利用寻常的肺细胞来实现完全超越了 “通常能力”预期的,并且还自行重组, 显示出了一种即便是不修改源代码(基因),也能具有很不一般的潜力。

Anthrobots 并非完全相同。 它们表现出一系列:

  • 形状:有些是球形的,有些是椭圆形的(椭圆形的),有些则更不规则。
  • 纤毛分布:有些纤毛均匀分布在其表面,而另一些纤毛则成簇聚集或沿着特定轴排列。
  • 运动类型:有些以紧密的圆圈移动,有些以直线移动,有些以弯曲路径移动,有些则表现出更不稳定、“兼收并蓄”的运动。

重要的是,研究人员发现形态(形状和纤毛分布)与运动类型之间存在相关性。 例如,具有均匀分布纤毛的球形 Anthrobots 往往不运动或只是原地“摆动”。 具有更极化纤毛分布的细长 Anthrobots 更有可能线性移动。 这表明细胞不仅仅是随机组装的; 它们的自组织受到生物物理线索的影响,并且由此产生的结构决定了它们的功能。 它们为特定任务形成特定的形状!

但最令人惊讶的发现,真正突出了这些细胞意想不到的能力,是它们能够修复受损的神经元组织。 记住,这些是肺细胞。 它们正常的工作是排列气道,而不是与神经元相互作用。 然而,当放置在划伤的培养人类神经元层(体外损伤模型)上时,Anthrobots:

  • 穿过划痕移动:它们主动迁移穿过受损区域。
  • 促进神经元再生:值得注意的是,它们的存在会刺激神经元生长并“桥接”划痕造成的间隙。 这不是一个微不足道的效果; 这是一个复杂的生物过程,涉及细胞信号传导、迁移和分化。
  • 不仅仅是机械性的:这不仅仅是由于 Anthrobots 的物理存在; 将惰性材料放在划痕上不会产生相同的效果。 Anthrobots 的某些特性,可能是它们的运动、纤毛以及可能分泌的因子的组合,正在积极促进神经元修复。
  • “超级机器人”:有人发现,如果将多个单独的“机器人”聚集在一起,它们通常会融合成更大的团块,这本身就具有独特的功能能力。

这是一个真正了不起的发现。 它表明细胞可以在其正常发育环境之外表现出令人惊讶的“能力”。 肺细胞,如果有机会,可以与神经元以有益的方式相互作用,促进修复。 这挑战了传统的、”还原论” 的生物学观点,即每种细胞类型都被视为具有固定的、预定的作用。 相反,它表明细胞比我们通常认为的更具灵活性适应性

Anthrobot 研究是解剖编译器概念的一个很好的例证,尽管解剖编译器本身仍然是理论上的。 研究人员并没有直接“编程” Anthrobots 以具有特定的形状或行为。 他们没有使用基因编辑或将详细的指令插入细胞中。 相反,他们操纵了环境,为细胞提供了触发其固有自组织和解决问题能力的线索。 在生物电信号和其他生物物理力的引导下,细胞基本上将自己“编译”成具有意想不到功能的新形式。

Anthrobots,毫不夸张地说,活生生的证明生物电在塑造生物学中起着核心作用。 它们代表的更多:与之前在 xenobots 中看到的相比有了重大飞跃:Anthrobots 代表了超越两栖动物; Anthrobots 由完全成年的哺乳动物体细胞组织制成并且,Anthrobots 自身的创造可以并行进行,从一个细胞到多个细胞按比例进行,方法简单易用。 这为使用甚至患者自身细胞进行治疗开辟了可能性,并可以按需创建任何“类型”的“机器人”!

Anthrobots 不仅仅是一种科学的好奇心。 它们是一个强大的新平台,用于探索可能生物形式和功能的“潜在空间”。 它们让我们得以一窥未来,在那里我们可以利用细胞固有的可塑性来创造具有各种应用的活机器,从再生医学到环境修复。 它们证明了基础研究的力量以及当我们继续探索生物电这个神奇世界时等待着我们的无穷惊喜。


迈克尔·莱文 生物电 101 速成课程 第42课:Anthrobots:人类细胞表现出完全意想不到的行为 小测验

1. Anthrobots 由以下哪种细胞制成?

A) 青蛙胚胎细胞。
B) 基因改造的人类细胞。
C) 成人肺细胞。
D) 涂有蛋白质的人造材料。

2. 使 Anthrobots 运动的关键是:

A) 插入鞭毛基因。
B) 改变细胞的环境以诱导纤毛朝外。
C) 施加外部电场。
D) 向细胞中添加化学马达。

3. 哪个选项最能体现并连接我们的生物电研究与 Anthrobots:

A) 理解形态发生
B) 基础认知
C) 生物电信号传导原理。
D) 以上都是。

4. 对或错:功能性 Anthrobot 结构的创建必须依赖于仔细、耗时的微观管理,即聚合中每个细胞的具体位置

A) 对。
B) 错

5. Anthrobots 表现出一系列:

A) 只有一种形状和一种运动类型。
B) 不同的形状和运动类型。
C) 形状,但都以相同的方式移动。
D) 运动类型,但都具有相同的形状。

6. Anthrobots 最令人惊讶的行为是它们能够:

A) 绕圈移动。
B) 自组装。
C) 促进受损神经元组织的修复。
D) 改变它们的形状。

7. 用 Anthrobots 观察到的神经元修复表明:

A) 成人细胞的可塑性有限。
B) 细胞可以在其正常环境之外表现出意想不到的能力。
C) 肺细胞与神经元相同。
D) 生物电与细胞行为无关。

8. Anthrobots 是以下哪一项的真实示例:

A) 以基因为中心的生物学观点的局限性。
B) 解剖编译器概念的潜力。
C) 基础认知的力量。
D) 以上都是。

9. 如上所述,帮助其他细胞这一令人惊讶的发现连接到:

A) 细胞在发育后可能具有较小的灵活性
B) 可以说,它们的行为“扩展”了。
C) 该组织可能无法完成某些不仅仅是修复组织的医疗应用。
D) 以上都是。

10. Anthrobots 的创建通过…发生

A) 模具和手工造型。
B) 插入基因修饰。
C) 生物打印以像其他机器人技术一样小心地放置细胞间的位置。
D) 利用肺细胞内现有的自建构倾向。

11. 对或错:获取生物机器人的方法具有“扩大规模”的潜力。

A) 对
B) 错。

12. 对或错:由于非常“固定”、预先确定的发育、“锁定”的结果,任何形式的生物机器人都可能需要自上而下的指令,而不仅仅是环境的变化。
A) 对
B) 错

13.对或错:由于 Anthrobots 代表了一种无限可塑的媒介,因此诱导完全从头开始的结构是一项简单、直接的任务。

A) 对。
B) 错。

14. Anthrobot 的形状和结构会影响…

A) 完全没有变化。
B) Anthrobot 的运动类型。
C) 修复能力(如果在群体中)
D) B 和 C

15. 哪句话最简洁地总结了关于 Anthrobots 的要点以及为什么它们的发现会成为生物学的重要突破。

A) 预编程的动作到固定的输入
B) 正常身体部位在其“正常目的”之外出现意想不到的能力
C) 有限的模型,其中几乎没有偏差。
D) 纯粹的随机性,根本没有组织

16. Anthrobots 与 xenobots 在“来源”方面的哪个方面不同?

A) 它们可以是基因未修饰的起源。
B) 成人人类细胞也可以自发排列成具有运动的集体结构。
C) 一种潜在的更高吞吐量,用于生长许多结构。
D) 以上都是

17. 机器人将采取的运动形式: A) 无法通过任何因素“预测”:在机器人完全发育并开始展示其能力之前,是完全 100% 未知的。
B) 移动细胞的最终输出始终取决于其细胞来源
C) 诸如圆周运动和直线运动等运动模式在统计学上与其形态显著相关
D) 仅取决于遗传学。

18. Anthrobots 为什么对再生医学很重要:

A) 它们展示了利用组织的智能集体行动来创造用于修复损伤的新结构的潜力。
B) 该模型允许摆脱处理癌症等疾病的化学手段
C) 因为它们不寻常的行为提供了“训练”和引导组织的可能性。
D) 以上都是

19. Anthrobots *证明*了生物电和生物学中的哪个要素,而不仅仅是理论?
A) 细胞的新兴能力
B) 解剖编译器作为想法
C) 功能单元形式的基础认知
D) 以上都是。

20. 对或错 — Anthrobots 在体外人类单层神经元组织上进行了测试:当形成小群体时,它可以修复它并桥接断裂

A) 对
B) 错。


迈克尔·莱文 生物电 101 速成课程 第42课:Anthrobots:人类细胞表现出完全意想不到的行为 答案表

1. C

2. B

3. D

4. B

5. B

6. C

7. B

8. D

9. B

10. D

11. A

12. B

13. B

14. D

15. B

16. D

17. C

18. D

19. D

20. A