Michael Levin Bioelectricity 101 Crash Course Lesson 40: The Future of Bioelectricity: Programming Biology for a Better World

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 40: The Future of Bioelectricity: Programming Biology for a Better World Summary

  • The field of bioelectricity holds immense promise for a range of future applications, impacting medicine, technology, and our understanding of life.
  • Regenerative medicine is a primary focus, with the potential to regrow lost limbs, repair spinal cord injuries, heal wounds more effectively, and even regenerate entire organs.
  • Birth defect correction: Bioelectric interventions could potentially correct developmental errors, restoring normal anatomical patterns.
  • Cancer therapy: Targeting aberrant bioelectric signals in tumors could offer new ways to treat cancer, potentially normalizing growth and preventing metastasis.
  • Synthetic biology: Understanding bioelectric control of development could lead to the creation of novel biological structures, “living machines” with designed forms and functions.
  • Bioelectronics and “smart bandages”: Advanced interfaces between electronic devices and biological tissues could deliver precise bioelectric stimuli for therapeutic purposes.
  • Beyond medicine: The principles of bioelectric control could inspire new approaches in robotics, computing, and materials science.
  • Addressing current technological and conceptual limitations: It’s early, and bioelectricity doesn’t yet offer easy ways to just grow a fully-functioning complex part, at-will. There remains the fundamental problems in fully cracking that electrical information to be solved
  • This future is not about “playing God” but about working with the inherent intelligence and regenerative capacity of living systems.

Michael Levin Bioelectricity 101 Crash Course Lesson 40: The Future of Bioelectricity: Programming Biology for a Better World

We’ve journeyed through the fascinating world of bioelectricity, exploring everything from the fundamental physics of ion channels to the complex dynamics of regeneration and the revolutionary implications for developmental biology. Now, let’s look ahead. What does the future hold for this rapidly evolving field? What transformative possibilities might be unlocked as we deepen our understanding of bioelectricity and learn to harness its power? The potential is nothing short of breathtaking, promising to revolutionize medicine, reshape technology, and even redefine our understanding of life itself.

The future of bioelectricity is not just about incremental advances; it’s about a paradigm shift. It’s about moving beyond a purely chemical and genetic view of biology to embrace a more holistic perspective that recognizes the profound role of electrical signals in shaping life. It’s about learning to “speak the language” of cells, using bioelectricity to guide their behavior, repair damage, and even create entirely new biological forms.

Let’s explore some of the most exciting areas where bioelectricity is poised to make a major impact:

  1. Regenerative Medicine: The Holy Grail: This is arguably the most dramatic and immediately compelling application of bioelectricity. Imagine a future where lost limbs can be regrown, spinal cord injuries can be repaired, and damaged organs can be regenerated. This isn’t science fiction; it’s a real possibility, grounded in the fundamental principles of bioelectric control that we’ve explored throughout this course.

    We’ve seen how highly regenerative animals, like planarian worms and salamanders, use bioelectric signals to guide the regrowth of lost body parts. Their cells “remember” the target morphology, encoded in bioelectric patterns, and actively work to restore that form. The challenge is to understand and manipulate these signals in organisms with more limited regenerative capacity, like humans.

    Michael Levin’s work on frog limb regeneration provides a tantalizing glimpse of what might be possible. By briefly applying a “cocktail” of ion channel modulators, delivered through a wearable bioreactor (the “BioDome”), his team was able to trigger significant limb regrowth in adult frogs, animals that normally cannot regenerate limbs. This is a major breakthrough, demonstrating that the latent regenerative potential can be “awakened” by the right bioelectric cues.

    The future of regenerative medicine will likely involve sophisticated bioelectric interventions, perhaps delivered through advanced microfluidic devices or implantable bioelectronics. We might be able to “draw” the desired structure – a limb, a heart valve, a section of spinal cord – and translate that into a set of bioelectric signals that guide the body’s own cells to rebuild it. This is the essence of the “Anatomical Compiler” concept – using bioelectricity to program biological form.

  2. Birth Defect Correction: Many birth defects are caused by disruptions in early embryonic development. The “Picasso tadpole” experiments, where Michael Levin’s group scrambled facial features and then watched them self-correct, demonstrate the remarkable error-correction capabilities of developing tissues, guided by bioelectricity.

    In the future, we might be able to detect and correct developmental errors in utero, using precisely targeted bioelectric interventions. This could prevent or mitigate a wide range of birth defects, restoring normal developmental trajectories.

  3. Cancer Therapy: Re-establishing Control: As we’ve discussed, cancer can be viewed as a breakdown in bioelectric communication, where cells lose their connection to the larger tissue network and revert to a more primitive, proliferative state. Targeting the aberrant bioelectric signals in tumors offers a completely new approach to cancer therapy.

    Instead of trying to kill cancer cells with toxic drugs or radiation, we might be able to “re-educate” them, restoring normal bioelectric patterns and coaxing them back into a healthy, differentiated state. This approach could potentially be less damaging to healthy tissues and more effective at preventing metastasis. Research showing that bioelectricity can normalize and “override” many cancerous mutations suggests an extremely promising road ahead.

  4. Synthetic Biology: Building with Life: Understanding how bioelectricity controls natural development opens up entirely new possibilities in synthetic biology – the design and construction of novel biological systems. We might be able to create “living machines” with specific forms and functions, guided by bioelectric principles. Imagine:
    • Bio-bots: Tiny, self-assembling robots made of living cells, programmed to perform specific tasks, like cleaning up pollution or delivering drugs to targeted locations in the body.
    • Engineered tissues and organs: Creating artificial tissues and organs for transplantation, not by 3D printing individual cells, but by guiding cells to self-organize into complex structures.
    • Novel materials: Designing living materials that can adapt and respond to their environment, inspired by the dynamic properties of biological tissues.
  5. Bioelectronics and Smart Bandages: The interface between electronic devices and biological tissues is a rapidly growing field. We’re already seeing the development of “smart bandages” that can monitor wound healing and deliver therapeutic agents. In the future, these bandages might incorporate sophisticated bioelectronic components, capable of delivering precise electrical stimuli to accelerate healing, prevent infection, and even guide tissue regeneration.
  6. Beyond Medicine: A New Paradigm: The principles of bioelectric control are not limited to medicine. They could inspire new approaches in a variety of fields:
    • Robotics: Designing robots that are more adaptable, resilient, and capable of self-repair, inspired by the “intelligence” of biological systems.
    • Computing: Exploring new computational architectures based on the principles of bioelectric information processing, potentially leading to more efficient and robust systems.
    • Materials Science: Creating “smart materials” that can change their properties in response to electrical signals, mimicking the dynamic behavior of living tissues.

However, exciting future aside, it is important to acknowledge the significant gap between our current knowledge and where we can potentially go. There are many remaining challenges in the fields of bioelectricity. These include:

  • Uncertainty remains We do not have a “one size fits all” complete model of how voltage patterns represent target morphology, yet. We can, through experiment and discovery, know that specific voltage profiles can encourage specific outcomes: but why and the totality of their relation with outcome is still mysterious.
  • We cannot grow very complex outcomes. Right now, bioelectric changes have a profound role in simple systems. Yet, creating, de novo, say, a highly complex structure is at this time extremely far off. This ties to above, to the lack of general mapping of code and body forms.
  • Complexity. A very vast number of different interacting elements control or regulate life. And these need to also be kept in consideration, besides electricity alone, like other factors discussed before, like hormones or biomechanics.
  • Difficulty in intervention: Because of both bioelectric factors and various limitations, we face great hurdles with long distance, non-invasive stimulation
It is tempting to discuss “god-like powers”. But such language should be avoided, as an ethical question, as well as representing accurately where bioelectricity is: it’s about cooperation with existing abilities, not dictating from outside a separate zone. The research that bioelectricity represents a new perspective to approach problems. To have us understand and learn “nature’s tricks”, not impose completely alien modes onto it. The revolution it helps us with is based on our own better understanding. And thus bioelectricity also highlights a move away from control via brute-force reductionism, where every detail must be managed — moving rather towards something else: more elegant understanding to coordinate and steer collective intelligence.

The future of bioelectricity is bright, promising to transform our world in profound ways. It’s a future where we work with the inherent intelligence and regenerative capacity of living systems, harnessing the power of electrical signals to heal, build, and explore the boundless possibilities of life. It’s not about a far future, it is happening now.


Michael Levin Bioelectricity 101 Crash Course Lesson 40: The Future of Bioelectricity: Programming Biology for a Better World Quiz

1. Which of the following is NOT a potential future application of bioelectricity?

A) Regrowing lost limbs.
B) Eliminating all genetic mutations.
C) Correcting birth defects.
D) Treating cancer.

2. The “Holy Grail” of bioelectricity research is often considered to be:

A) Developing new antibiotics.
B) Regenerative medicine.
C) Creating artificial intelligence.
D) Understanding the origin of life.

3. Michael Levin’s frog limb regeneration experiments demonstrated that:

A) Adult frogs can easily regenerate limbs without any intervention.
B) Bioelectric signals can trigger significant limb regrowth in animals that normally cannot regenerate limbs.
C) Genes are the only factor controlling limb regeneration.
D) Bioelectricity has no role in limb regeneration.

4. What can bioelectricity NOT help with yet?

A) Influencing Tissue Regeneration
B) Cancer Reversal
C) Growing, ex nihilo, an entire arm inside an adult human, immediately
D) Growing tail on frog

5. The “Anatomical Compiler” concept suggests that we might be able to:

A) Program new life.
B) Set new target goals and utilize the electrical signaling to create entirely new creatures.
C) Bioelectrically alter, on demand, every part of existing complex creatures, regardless of other constraints
D) All of the above

6. Bioelectric interventions could potentially correct birth defects by:

A) Replacing all damaged cells with healthy cells.
B) Restoring normal developmental patterns.
C) Eliminating the need for prenatal care.
D) Preventing all genetic mutations.

7. Targeting bioelectric signals in tumors could offer a new approach to cancer therapy by:

A) Killing cancer cells directly with electricity.
B) Influencing and making them no longer tumor-like and reintegrating into a healthy growth and morphology
C) Replacing cancerous tissue with non-cancerous cells
D) Preventing cancer via chemicals only.

8. “Living machines” or “bio-bots” are examples of:

A) The utilization of regenerative technologies, directly for the improvement of life
B) Genetic manipulation to cure disease.
C) Possible goals achievable in theory
D) New synthetic biology projects

9. “Smart bandages” might use bioelectricity to:

A) Monitor wound healing and deliver drugs.
B) Accelerate tissue regeneration.
C) Prevent infection.
D) All of the above.

10. Beyond medicine, bioelectricity could impact:

A) Robotics and computing.
B) Materials science.
C) Our understanding of fundamental biological principles.
D) All of the above.

11. True or False: Bioelectricity represents magic-like, infinitely plastic total power of tissues

A) True
B) False.

12. The paradigm shift brought about by bioelectricity involves:

A) Replacing genetics with electricity.
B) Moving towards a more holistic view of biology that includes electrical signals.
C) Ignoring the role of chemical signals.
D) Focusing solely on the nervous system.

13. Which aspect represents “guiding and steering existing potential and systems” in bioelectricity?

A) 3D Bioprinting new organs atom by atom.
B) Editing cells and replacing.
C) Using target morphology principles
D) Genetic modification and rebuilding

14. Bioelectricity is more a form of language than the “construction materials”.

A) True
B) False.

15. A major *existing limitation* now, as far as bioelectricity, is best explained as?

A) No effect is possible at all from changes to electric field.
B) Understanding of how to use that process as signal, with how those “codes” in field voltage connect to structures.
C) Finding appropriate model organism
D) It requires magic

16. Bioelectricity is focused on what concept rather than full external design?

A) Cooperation, existing intelligent systems
B) Total dominance
C) Total Design Authority
D) Genetic Replacement

17. One technology that can be used for bioelectric study is:

A) CRISPR
B) Voltage Sensitive Dyes
C) Transhumanist alteration
D) Telepathy.

18. What might be useful alongside with wearable tech to kick start regeneration in future?

A) CRISPR-CAS
B) Chemicals delivered into tissue
C) Nano robots to directly build at a micro level
D) Microelectrode Arrays

19. Which of these is correct regarding bioelectricity:

A) We do not fully understand how it codes and guides changes in life, yet
B) Its possibilities in reshaping development makes it revolutionary in developmental biology.
C) Working alongside *with* biology rather than “dictating to it”.
D) All of the Above.

20. True or False: Bioelectricity promises to lead to an understanding on how to best manipulate tissue level “collective intelligence” to better cooperate for medical benefits.

A) True.
B) False.


Michael Levin Bioelectricity 101 Crash Course Lesson 40: The Future of Bioelectricity: Programming Biology for a Better World Answer Sheet

1. B

2. B

3. B

4. C

5. D

6. B

7. B

8. D

9. D

10. D

11. B

12. B

13. C

14. A

15. B

16. A

17. B

18. D

19. D

20. A


迈克尔·莱文 生物电 101 速成课程 第40课:生物电的未来:为更美好的世界编程生物 摘要

  • 生物电领域为一系列未来应用带来了巨大的希望,影响着医学、技术和我们对生命的理解。
  • 再生医学是一个主要焦点,有可能使失去的四肢再生、修复脊髓损伤、更有效地治愈伤口,甚至再生整个器官。
  • 出生缺陷纠正:生物电干预有可能纠正发育错误,恢复正常的解剖模式。
  • 癌症治疗:靶向肿瘤中异常的生物电信号可能提供治疗癌症的新方法,有可能使生长正常化并防止转移。
  • 合成生物学:了解生物电对发育的控制可能会导致创造具有设计形式和功能的新型生物结构——“活机器”。
  • 生物电子学和“智能绷带”:电子设备和生物组织之间的高级接口可以提供精确的生物电刺激,用于治疗目的。
  • 超越医学:生物电控制的原理可以激发机器人、计算和材料科学的新方法。
  • 解决当前的技术和概念限制:现在还为时过早,生物电还不能提供简单的方法来随意生长功能齐全的复杂部件。 充分破解电信息的基本问题仍然有待解决
  • 这个未来不是关于“扮演上帝”,而是关于生命系统固有的智能和再生能力合作。

迈克尔·莱文 生物电 101 速成课程 第40课:生物电的未来:为更美好的世界编程生物

我们已经走过了生物电的迷人世界,探索了从离子通道的基本物理学到再生和解剖编译器的复杂动力学,以及对发育生物学的革命性影响的一切。 现在,让我们展望未来。 这个快速发展的领域的未来会怎样? 当我们加深对生物电的理解并学会利用其力量时,可能会释放出哪些变革性的可能性? 其潜力简直令人叹为观止,有望彻底改变医学、重塑技术,甚至重新定义我们对生命的理解。

生物电的未来不仅仅是渐进式的进步; 这是一场范式转变。 这是关于超越纯粹的生物学化学和遗传学观点,拥抱一个更全面的视角,认识到电信号在塑造生命中的深远作用。 这是关于学习“说”细胞的“语言”,利用生物电来引导它们的行为、修复损伤,甚至创造全新的生物形态。

让我们探索生物电有望产生重大影响的一些最令人兴奋的领域:

  1. 再生医学:圣杯:这可以说是生物电最引人注目和最直接的应用。 想象一个未来,失去的四肢可以再生,脊髓损伤可以修复,受损的器官可以再生。 这不是科幻小说; 这是一种真正的可能性,它基于我们在整个课程中探索的生物电控制的基本原理。

    我们已经看到,高度再生的动物,如涡虫和蝾螈,如何利用生物电信号来引导失去的身体部位的再生。 它们的细胞“记住”目标形态,编码在生物电模式中,并积极努力恢复这种形态。 挑战在于了解和操纵再生能力更有限的生物体(如人类)中的这些信号。

    迈克尔·莱文对青蛙四肢再生的研究让我们看到了可能发生的事情。 通过短暂地应用离子通道调节剂的“混合物”,通过可穿戴生物反应器(“BioDome”)输送,他的团队能够在通常不能再生四肢的成年青蛙中触发显着的四肢再生。 这是一个重大突破,表明潜在的再生潜能可以通过正确的生物电线索被“唤醒”。

    再生医学的未来可能涉及复杂的生物电干预,可能通过先进的微流体装置或植入式生物电子设备来实现。 我们也许能够“绘制”所需的结构——四肢、心脏瓣膜、脊髓的一部分——并将其转化为一组生物电信号,引导身体自身的细胞重建它。 这是“解剖编译器”概念的本质——利用生物电来编程生物形态。

  2. 出生缺陷纠正:许多出生缺陷是由早期胚胎发育中断引起的。 “毕加索蝌蚪”实验(迈克尔·莱文的小组打乱了面部特征,然后观察它们自我纠正)证明了发育中组织在生物电的引导下具有卓越的纠错能力。

    在未来,我们也许能够在子宫内检测和纠正发育错误,使用精确定向的生物电干预。 这可以预防或减轻各种出生缺陷,恢复正常的发育轨迹。

  3. 癌症治疗:重建控制:正如我们所讨论的,癌症可以被视为生物电通讯的崩溃,其中细胞失去与较大组织网络的连接并恢复到更原始的增殖状态。 靶向肿瘤中异常的生物电信号为癌症治疗提供了一种全新的方法。

    与其试图用有毒药物或辐射杀死癌细胞,我们也许能够“重新教育”它们,恢复正常的生物电模式,并将它们哄骗回健康的分化状态。 这种方法可能对健康组织的损害较小,并且更有效地防止转移。 研究表明,生物电可以使许多癌变突变正常化并“覆盖”它们,这表明了一条非常有前途的道路。

  4. 合成生物学:用生命构建:了解生物电如何控制自然发育为合成生物学开辟了全新的可能性——设计和构建新型生物系统。 我们也许能够创造出具有特定形式和功能的“活机器”,以生物电原理为指导。 想象一下:
    • 生物机器人:由活细胞制成的微型自组装机器人,被编程为执行特定任务,例如清理污染或将药物输送到体内的目标位置。
    • 工程组织和器官:为移植创造人工组织和器官,不是通过 3D 打印单个细胞,而是通过引导细胞自组织成复杂的结构。
    • 新型材料:设计能够适应和响应环境的生物材料,其灵感来自生物组织的动态特性。
  5. 生物电子学和智能绷带:电子设备和生物组织之间的接口是一个快速发展的领域。 我们已经看到了可以监测伤口愈合和输送治疗剂的“智能绷带”的开发。 未来,这些绷带可能会包含复杂的生物电子元件,能够提供精确的电刺激以加速愈合、预防感染,甚至引导组织再生。
  6. 超越医学:一个新范式:生物电控制的原理不仅限于医学。 它们可以激发各个领域的新方法:
    • 机器人技术:受生物系统“智能”的启发,设计出更具适应性、弹性和自我修复能力的机器人。
    • 计算:探索基于生物电信息处理原理的新计算架构,可能会导致更有效和稳健的系统。
    • 材料科学:创造能够响应电信号改变其特性的“智能材料”,模仿生物组织的动态行为。

然而,除了令人兴奋的未来之外,重要的是要承认我们目前的知识与我们可能达到的目标之间存在巨大差距。 生物电领域仍有许多挑战。 这些包括:

  • 不确定性依然存在我们还没有一个“万能”的完整模型来解释电压模式如何代表目标形态。 我们可以通过实验和发现知道,特定的电压分布可以促进特定的结果:但是为什么以及它们与结果的全部关系仍然是个谜。
  • 我们不能培养非常复杂的结果。现在,生物电变化在简单系统中起着重要作用。 然而,从头开始创造一个高度复杂的结构,目前还非常遥远。 这与上面相关,缺乏代码和身体形态的一般映射。
  • 复杂性。 大量不同的相互作用元素控制或调节生命。 除了电之外,还需要考虑这些,例如之前讨论过的其他因素,如激素或生物力学。
  • 干预困难:由于生物电因素和各种限制,我们在长距离、非侵入性刺激方面面临巨大障碍

很容易就想到“神一样的力量”。 但应该避免使用这种语言,作为一个伦理问题,以及准确地表示生物电:它是与现有能力的合作,而不是从外部单独区域发号施令。 生物电所代表的研究是一种解决问题的新视角。 让我们理解和学习“自然的诀窍”,而不是将完全陌生的模式强加给它。 它帮助我们实现的革命是基于我们自己更好的理解。 因此,生物电也突出了从通过蛮力还原论进行控制的转变,在这种控制中,每一个细节都必须得到管理——转向其他事物:更优雅的理解来协调和引导集体智慧。

生物电的未来是光明的,有望以深刻的方式改变我们的世界。 在这样的未来,我们生命系统固有的智能和再生能力合作,利用电信号的力量来治愈、构建和探索生命的无限可能性。 这不是关于遥远的未来,它正在发生现在


迈克尔·莱文 生物电 101 速成课程 第40课:生物电的未来:为更美好的世界编程生物 小测验

1. 以下哪一项不是生物电的潜在未来应用?

A) 再生失去的四肢。
B) 消除所有基因突变。
C) 纠正出生缺陷。
D) 治疗癌症。

2. 生物电研究的“圣杯”通常被认为是:

A) 开发新抗生素。
B) 再生医学。
C) 创造人工智能。
D) 了解生命的起源。

3. 迈克尔·莱文的青蛙四肢再生实验表明:

A) 成年青蛙无需任何干预即可轻松再生四肢。
B) 生物电信号可以触发通常不能再生四肢的动物的显着四肢再生。
C) 基因是控制四肢再生的唯一因素。
D) 生物电在四肢再生中没有作用。

4. 生物电还不能帮助解决什么问题?

A) 影响组织再生
B) 癌症逆转
C) 在成年人体内从头立即长出整条手臂
D) 在青蛙身上长出尾巴

5. “解剖编译器”概念表明我们也许能够:

A) 编写新生命程序。
B) 设定新的目标,并利用电信号创造全新的生物。
C) 可以根据需要对现有复杂生物的每个部分进行生物电改变,而不受其他限制
D) 以上都是

6. 生物电干预有可能通过以下方式纠正出生缺陷:

A) 用健康的细胞替换所有受损的细胞。
B) 恢复正常的发育模式。
C) 消除对产前护理的需求。
D) 防止所有基因突变。

7. 靶向肿瘤中的生物电信号可以通过以下方式提供治疗癌症的新方法:

A) 直接用电杀死癌细胞。
B) 影响并使它们不再像肿瘤一样,并重新融入健康的生长和形态
C) 用非癌细胞替换癌组织
D) 仅通过化学物质预防癌症。

8. “活机器”或“生物机器人”是以下哪一项的例子:

A) 直接利用再生技术来改善生命
B) 通过基因操作治愈疾病。
C) 理论上可以实现的目标
D) 新的合成生物学项目

9. “智能绷带”可能会使用生物电来:

A) 监测伤口愈合并输送药物。
B) 加速组织再生。
C) 预防感染。
D) 以上都是。

10. 除了医学,生物电还可以影响:

A) 机器人和计算。
B) 材料科学。
C) 我们对基本生物学原理的理解。
D) 以上都是。

11. 对或错:生物电代表了像魔法一样,无限可塑的组织总力量

A) 对
B) 错。

12. 生物电带来的范式转变涉及:

A) 用电取代遗传学。
B) 转向更全面的生物学观点,其中包括电信号。
C) 忽略化学信号的作用。
D) 仅关注神经系统。

13. 哪个方面代表了生物电中的“引导和操纵现有潜力和系统”?

A) 逐个原子地 3D 生物打印新器官。
B) 编辑和替换细胞。
C) 使用目标形态原理
D) 基因改造和重建

14. 生物电更像是一种语言,而不是“建筑材料”。

A) 对
B) 错。

15. 目前生物电的一个主要现有局限性最好解释为?

A) 电场的变化根本不可能产生任何影响。
B) 了解如何将该过程用作信号,以及场电压中的那些“代码”如何与结构连接。
C) 寻找合适的模式生物
D) 它需要魔法

16. 生物电关注的是什么概念,而不是完全的外部设计?

A) 合作,现有的智能系统
B) 完全支配
C) 完全设计权
D) 基因替换

17. 可以用于生物电研究的一项技术是:

A) CRISPR
B) 电压敏感染料
C) 超人类主义改造
D) 心灵感应。

18. 什么可能与可穿戴技术一起使用以在未来启动再生?

A) CRISPR-CAS
B) 输送到组织中的化学物质
C) 直接在微观层面构建的纳米机器人
D) 微电极阵列

19. 关于生物电,以下哪一项是正确的:

A) 我们还不完全了解它如何编码和指导生命的变化
B) 它在重塑发育方面的可能性使其在发育生物学中具有革命性。
C) 与生物学合作而不是“支配”它。
D) 以上都是。

20. 对或错:生物电有望让我们了解如何最好地操纵组织层面的“集体智慧”,以更好地合作以获得医疗益处。

A) 对。
B) 错。


迈克尔·莱文 生物电 101 速成课程 第40课:生物电的未来:为更美好的世界编程生物 答案表

1. B

2. B

3. B

4. C

5. D

6. B

7. B

8. D

9. D

10. D

11. B

12. B

13. C

14. A

15. B

16. A

17. B

18. D

19. D

20. A