Michael Levin Bioelectricity 101 Crash Course Lesson 31: TAME: Technological Approach to Mind Everywhere Summary
- TAME (Technological Approach to Mind Everywhere) is a framework for understanding and interacting with diverse forms of intelligence, regardless of their origin or physical makeup.
- It emphasizes a gradualist view of cognition, meaning there’s no sharp line between “truly cognitive” and “non-cognitive” systems; instead, there’s a continuum of capabilities.
- TAME uses an empirical, engineering-focused approach. The level of agency attributed to a system should be determined by what works best for predicting and controlling its behavior. This contrasts sharply with the inclination to make a decision beforehand as to what can, by definition, be or not be cognitive.
- A key concept is the “axis of persuadability,” ranging from systems that can only be changed by physical rewiring (like a clock) to those that can be persuaded by rational argument (like a human).
- TAME highlights the importance of goal-directed activity as a fundamental characteristic of “Selves,” regardless of scale or complexity. A “self” has its goals, however, humble.
- “Selves” can be compared based on the scale of their goals (in space and time) – a kind of “cognitive light cone.”
- The multi-scale competency architecture, a very useful concept for comparing cognition, as a degree or capacity, between any possible system.
- Morphogenesis (the development and regeneration of body form) is presented as an example of basal cognition, where cell collectives exhibit goal-directed behavior in “morphospace.”
- Bioelectric signaling, particularly through gap junctions, is proposed as a key mechanism for scaling up cognition, allowing individual cells to work together towards larger-scale goals.
- The plasticity afforded to the whole from having cognitive components enable it to evolve more quickly.
- TAME has implications for regenerative medicine, artificial intelligence, evolutionary biology, and even ethics, prompting us to reconsider how we define and interact with diverse forms of intelligence.
Michael Levin Bioelectricity 101 Crash Course Lesson 31: TAME: Technological Approach to Mind Everywhere
Throughout this course, we’ve explored the fascinating world of bioelectricity, delving into how electrical signals shape bodies, guide regeneration, and even hint at a deeper form of cellular communication. We’ve seen how planaria regrow heads, how frogs can be coaxed to regenerate limbs, and how cancer can be viewed as a breakdown of bioelectric coordination. But all of these discoveries, and the incredible potential they unlock, raise a fundamental question: How do we think about these phenomena in a way that is both scientifically rigorous and truly open to the possibilities? How do we move beyond a narrow, brain-centric view of intelligence and embrace a broader, more inclusive perspective?
That’s where TAME – the Technological Approach to Mind Everywhere – comes in. It’s not just a collection of facts about bioelectricity; it’s a framework, a way of looking at the world that helps us understand, interact with, and even create diverse forms of intelligence, regardless of whether they arise from natural evolution, human engineering, or a combination of both.
Imagine you’re an explorer venturing into uncharted territory. You need a map, a compass, and a set of tools to navigate the landscape and interact with whatever you find. TAME is like that map, compass, and toolkit for the world of cognition, a world that extends far beyond the familiar realm of brains and nervous systems.
Why “Technological”?
The “technological” part of TAME emphasizes a practical, hands-on approach. It’s not about abstract philosophical debates; it’s about doing. It’s about building, testing, and manipulating systems to understand how they work and how they can be changed. It’s about taking an engineering perspective: What are the design principles? How can we predict and control the system’s behavior? What can be said definitively about its goal structure? How does evolution take this view?
Think of it like this: a car mechanic doesn’t just think about how a car engine works; they get their hands dirty, take it apart, put it back together, and experiment. TAME encourages us to do the same with biological systems, viewing them as complex machines (but not 20th-century machines) that can be understood, modified, and even reprogrammed to achieve desired outcomes. And because we can literally put living beings together now, a conceptual scheme for interpreting what results has now become extremely urgent.
Why “Mind Everywhere”?
The “Mind Everywhere” part is perhaps the most radical aspect of TAME. It challenges the conventional assumption that “mind” is something exclusive to complex brains, especially human brains. Instead, TAME proposes that degrees of mind-like properties – goal-directed activity, information processing, decision-making, even a rudimentary form of sentience – exist throughout the living world, and even beyond it.
This doesn’t mean that rocks and rivers are “conscious” in the same way that you and I are. But it does mean that we shouldn’t automatically dismiss the possibility of some form of cognition, some degree of agency, in systems that don’t look like us. The concept “mind,” as an umbrella for processes that can have drastically varying levels of function, helps us break free of this evolutionary bias, that a big centralized brain is where all this is situated. It’s a matter of asking to what extent the processes normally only attributed to a complex, verbal animal, applies in novel organisms or synthetic biology.
Consider a single-celled organism, like an amoeba. It doesn’t have a brain, but it can sense its environment, move towards food, avoid harmful substances, and even learn from experience. Is that “just physics,” or is there something more going on? TAME suggests that there’s a continuum of cognitive capacity, ranging from the simplest homeostatic systems (like a thermostat) to the most complex minds we know (like, again, our human mind), and that the amoeba occupies a position somewhere along that continuum. It, very likely, has some degree of mind, in its degree and nature appropriate for its lifestyle.
The Axis of Persuadability: A Key Tool
One of the central tools within the TAME framework is the “axis of persuadability.” This is a way of classifying systems based on how you can change their behavior. Think about this: you just want the thing to do something. How?
- At one end of the axis, you have systems that can only be changed by direct physical manipulation. Think of a mechanical clock. If you want it to run faster or slower, you have to open it up and adjust its gears and springs. You can’t persuade it to change its behavior; you have to rewire it.
- At the other end of the axis, you have systems that can be persuaded by rational argument. Think of a human being. If you want someone to change their behavior, you can try to convince them with logic, evidence, and appeals to their values. You don’t need to physically alter their brain (thank goodness!); you can influence them with information.
In between these two extremes lies a whole spectrum of possibilities:
- Simple homeostatic systems (like a thermostat): You can change their “goal” (the desired temperature), but you can’t change how they achieve that goal.
- Animals that can be trained: You can use rewards and punishments to shape their behavior, but you don’t need to understand the details of their internal workings.
- Simple gene regulatory circuits. They possess a degree of computational capacity, can respond, change, and be trained for different operations by being given experience, like operant or associative training paradigms, and respond with changes in transcription patterns.
The crucial point is that the best way to interact with a system depends on its position on this axis. If you try to “persuade” a clock with logical arguments, you’ll get nowhere. And if you try to rewire a human brain to change someone’s mind, you’ll not only face ethical and practical challenges, but you’ll also miss out on the far more efficient and powerful method of communication.
The axis of persuadability is not a fixed, static thing. Systems can move along the axis. For example, a simple organism might evolve greater cognitive capacity, becoming more amenable to learning and adaptation. Or, a damaged brain might lose some of its higher-level functions, becoming less responsive to complex reasoning. Evolution may or may not progressively go in either direction, so this cannot be called a progression of evolution.
Morphogenesis as Basal Cognition: A Concrete Example
To make these ideas more concrete, let’s revisit morphogenesis – the process by which living things develop and maintain their shape. We’ve seen examples of this throughout the course: tadpoles rearranging their facial features, planaria regenerating heads, frog embryos correcting birth defects.
TAME encourages us to view morphogenesis not just as a complex dance of chemical signals, but as a form of basal cognition. The cells that make up a developing organism are not just passively following instructions; they’re actively solving problems in “morphospace” – the space of possible shapes and structures.
Think of a developing limb. The cells need to figure out where to grow, what kind of tissue to become (muscle, bone, skin), and how to arrange themselves into a functional limb. This isn’t a pre-programmed sequence of events; it’s a dynamic, adaptive process. The cells are constantly communicating with each other, sensing their environment, and adjusting their behavior to achieve a specific “target morphology” – the correct shape of the limb.
This is where bioelectricity comes in. The slow, steady-state voltage gradients we discussed in Lesson 2 act as a kind of “pattern memory,” storing information about the target morphology. These bioelectric patterns guide the cells, telling them where to go and what to do, much like a blueprint or a set of architectural plans. But unlike a static blueprint, this bioelectric “blueprint” is dynamic and adaptable. It can change in response to injury, environmental cues, or even experimental manipulation (as we saw with the two-headed planaria).
Scaling Up Cognition: The Role of Gap Junctions
So, how do individual cells, each with limited cognitive capacity, work together to achieve these complex morphogenetic goals? One of the key mechanisms, as we’ve discussed, is gap junctional communication.
Gap junctions are tiny channels that connect adjacent cells, allowing ions and small molecules to flow directly between them. This creates a kind of “electrical network,” where cells can share information and coordinate their activity. And not just electrical information – remember – all kinds of proteins, messenger signals, stress molecules and other signals, all can be exchanged through Gap Junctions! It creates, really, an exchange between inside one cell, to inside another – it can effectively make those distinct cells more like a single, much larger agent!
Think of it like a group of people working on a jigsaw puzzle. If they’re isolated and can’t see each other’s pieces, it will take a long time to complete the puzzle. But if they can communicate, share information, and coordinate their efforts, they can solve the puzzle much faster and more efficiently.
Gap junctions allow cells to do something similar. They enable cells to:
- Sense a larger area: Instead of just responding to their immediate surroundings, cells can sense what’s happening in distant parts of the tissue.
- Integrate information: Cells can combine information from multiple sources, creating a more complete picture of the overall situation.
- Make collective decisions: Cells can “vote” on the best course of action, based on the combined input of the network.
- Store memories: The bioelectric activity propagating can represent storage and transmission of critical data for running physiological operations and constructing morphology.
- Amplify small stresses: Instead of responding in an isolated, cellular manner to challenges, a collection of networked cells have now become a larger, single unit, meaning what will effect changes to it is now larger.
- Scale up from simpler homeostatic systems. Cells operating at the scale of subcellular measurements can create tissue and body wide computations and action toward goals!
In effect, gap junctions allow cells to “pool their resources” and create a larger, more capable “Self.” This is how a collection of relatively simple cells can build something as complex as a human body.
Implications and Future Directions
The TAME framework has far-reaching implications, extending beyond the realm of basic biology. Here are just a few examples:
- Regenerative medicine: By understanding how bioelectric signals control growth and form, we might be able to develop new therapies to regenerate damaged tissues and organs. Imagine being able to “reprogram” cells to regrow a lost limb or repair a damaged heart, not by micromanaging every cell, but by providing the right “electrical instructions.”
- Artificial intelligence: TAME suggests that we can learn from biology to build more robust, adaptable, and intelligent artificial systems. Instead of focusing solely on brain-like neural networks, we can explore other forms of collective intelligence, inspired by the way cells communicate and cooperate.
- Evolutionary biology: TAME provides a new lens for understanding how complex cognitive systems evolved from simpler beginnings. It highlights the continuity between basic cellular processes and the sophisticated cognitive abilities of animals with brains.
- Ethics: As we create increasingly complex synthetic life forms, bioengineered organisms, and human-machine interfaces, we’ll need new ethical frameworks to guide our interactions with these “non-traditional” intelligences. TAME encourages us to move beyond anthropocentric biases and consider the possibility of sentience and agency in a much wider range of systems.
- TAME(Technological Approach to Mind Everywhere,无处不在的心智的技术方法)是一个理解和与各种形式的智能互动的框架,无论它们的起源或物理构成如何。
- 它强调认知的渐进观,这意味着“真正认知”系统和“非认知”系统之间没有明确的界限;相反,存在一个连续的能力谱。
- TAME 采用经验性的、以工程为重点的方法。 归因于系统的能动性水平应由什么最能预测和控制其行为来决定。 这与事先决定什么可以(根据定义)是或不是认知的倾向形成鲜明对比。
- 一个关键概念是“可说服性轴”,范围从只能通过物理重新布线改变的系统(如时钟)到可以通过理性论证说服的系统(如人类)。
- TAME 强调目标导向活动的重要性,作为“自我”的基本特征,无论规模或复杂性如何。 “自我”有其目标,无论多么卑微。
- 可以根据其目标的规模(在空间和时间上)——一种“认知光锥”——来比较“自我”。
- 多尺度能力架构,一个非常有用的概念,用于比较任何可能系统之间的认知,作为一个程度或能力。
- 形态发生(身体形态的发育和再生)被呈现为基础认知的一个例子,其中细胞集体在“形态空间”中表现出目标导向的行为。
- 生物电信号传导,特别是通过间隙连接,被认为是扩大认知范围的关键机制,允许单个细胞共同努力实现更大规模的目标。
- 整体具有认知成分所提供的可塑性使其能够更快地进化。
- TAME 对再生医学、人工智能、进化生物学甚至伦理学都有影响,促使我们重新思考如何定义和与各种形式的智能互动。
- 在轴的一端,你的系统只能通过直接的物理操作来改变。 想想机械钟。 如果你想让它走得更快或更慢,你必须打开它并调整它的齿轮和弹簧。 你不能说服它改变它的行为; 你必须重新布线它。
- 在轴的另一端,你有可以通过理性论证说服的系统。 想想人类。 如果你想让某人改变他们的行为,你可以尝试用逻辑、证据和诉诸他们的价值观来说服他们。 你不需要物理地改变他们的大脑(谢天谢地!); 你可以用信息影响他们。
- 简单的稳态系统(如恒温器):你可以改变它们的“目标”(所需的温度),但你不能改变它们如何实现该目标。
- 可以训练的动物:你可以使用奖励和惩罚来塑造它们的行为,但你不需要了解它们内部运作的细节。
- 简单的基因调控回路。 它们具有一定程度的计算能力,可以响应、改变并通过经验进行不同操作的训练,例如操作性或联想性训练范式,并以转录模式的变化作为响应。
- 感知更大的区域:细胞不仅可以响应其周围环境,还可以感知组织中遥远部分发生的事情。
- 整合信息:细胞可以组合来自多个来源的信息,从而创建更完整的整体情况图。
- 做出集体决策:细胞可以根据网络的组合输入对最佳行动方案进行“投票”。
- 存储记忆:传播的生物电活动可以代表重要数据的*存储*和*传输*,用于运行生理操作和构建形态。
- 放大微小压力:一个联网的细胞集合不再以孤立的、细胞的方式对挑战做出反应,而是成为一个更大的单一单元,这意味着会影响它的变化现在*更大*。
- 从更简单的稳态系统扩展。 在亚细胞测量规模上运行的细胞可以创建组织和全身计算以及朝着目标采取行动!
- 再生医学: 通过了解生物电信号如何控制生长和形态,我们可能能够开发新的疗法来再生受损的组织和器官。 想象一下,能够“重新编程”细胞以重新长出失去的肢体或修复受损的心脏,不是通过微观管理每个细胞,而是通过提供正确的“电指令”。
- 人工智能: TAME 建议我们可以向生物学学习,以构建更强大、适应性更强和更智能的人工系统。 我们不必只专注于类脑神经网络,还可以探索其他形式的集体智能,其灵感来自细胞的交流和合作方式。
- 进化生物学: TAME 为理解复杂认知系统如何从更简单的开端进化提供了一个新的视角。 它强调了基本细胞过程与具有大脑的动物的复杂认知能力之间的连续性。
- 伦理学: 随着我们创造出越来越复杂的合成生命形式、生物工程生物和人机界面,我们将需要新的伦理框架来指导我们与这些“非传统”智能的互动。 TAME 鼓励我们超越以人类为中心的偏见,并考虑在更广泛的系统中存在感知和能动性的可能性。
The journey through bioelectricity and the TAME framework is just beginning. There are many unanswered questions and exciting avenues for future research. But by embracing a broader, more inclusive view of cognition, we can unlock new insights into the nature of life, intelligence, and the incredible potential of living systems.
Michael Levin Bioelectricity 101 Crash Course Lesson 31: TAME: Technological Approach to Mind Everywhere Quiz
1. What does “TAME” stand for?
A) Technological Advancement in Mind Exploration
B) Technological Approach to Mind Everywhere
C) Theoretical Analysis of Mind Emergence
D) Tissue Assembly and Morphogenetic Engineering
2. What is the core philosophical stance of TAME regarding cognition?
A) Cognition is a binary property – either a system has it or it doesn’t.
B) Cognition is a gradual property, existing on a continuum of complexity.
C) Cognition is only found in systems with brains.
D) Cognition is a purely chemical phenomenon.
3. The “technological” aspect of TAME emphasizes:
A) Abstract philosophical debates about the nature of mind.
B) A hands-on, experimental approach to understanding and manipulating cognition.
C) The use of computers to simulate brain activity.
D) The development of new drugs to treat neurological disorders.
4. The “Mind Everywhere” aspect of TAME suggests that:
A) All physical objects are conscious.
B) Mind-like properties can be found in a wide range of systems, not just brains.
C) Only humans are capable of true intelligence.
D) Plants are more intelligent than animals.
5. What concept of mind emphasizes we focus only on natural animals when discussing true, functional cognition:
A) Gradualism.
B) Phylogenetic.
C) Engineering.
D) Evolutionary bias.
6. The “axis of persuadability” classifies systems based on:
A) Their physical size and complexity.
B) The best ways to change their behavior.
C) Their evolutionary history.
D) Their ability to perform specific tasks, like solving mazes.
7. Which of the following is an example of a system at the “rewiring” end of the axis of persuadability?
A) A trained dog
B) A human being
C) A mechanical clock
D) A thermostat
8. According to TAME, morphogenesis can be viewed as a form of:
A) Random chemical reactions.
B) Basal cognition, with cells solving problems in morphospace.
C) Purely genetic programming.
D) Magic.
9. What role do slow, steady-state bioelectric gradients play in morphogenesis, according to TAME?
A) They act as rapid communication signals, like action potentials.
B) They store information about the target morphology, like a “pattern memory.”
C) They have no role; morphogenesis is purely chemical.
D) They only control the movement of muscles.
10. Gap junctions contribute to the scaling up of cognition by:
A) Preventing cells from communicating with each other.
B) Allowing cells to share information and coordinate their activity.
C) Generating rapid action potentials.
D) Blocking the flow of ions across cell membranes.
11. What is a self, according to TAME?
A) Anything that physically resembles an Earth animal.
B) Systems that serve as the functional locus for large scale preferences, memory, stress, goals.
C) Systems that do complex physical actions, such as growing legs, as decided on the gene level.
D) Brains
12. True or False: TAME suggests that we can learn from biological systems to build better artificial intelligence.
A) True
B) False
13. The TAME framework has potential implications for which of the following fields?
A) Regenerative medicine
B) Evolutionary biology
C) Ethics
D) All of the above
14. What does “Morphospace” mean, in context of Morphogenesis?
A) Where biological organisms go into outer space.
B) Where biological tissue send bioelectric signals to.
C) The “space” or the variety of possible physical shapes and structures any biological system could develop into.
D) How tissues think.
15. The example used for showing how all systems fall on a cognitive spectrum:
A) Bioelectric circuits.
B) Ion channels.
C) Axis of Persuadability
D) Gap junctions
16. A “cognitive light cone” refers to:
A) A structure only used for communication among neurons
B) Scale, scope and range of information, sensing and activity in any given system
C) The ability to see and use light
D) Eyes that grew in odd places in experiments with frog tadpoles.
17. True or False: the multi-scale competency architecture explains that having parts, modules and systems of error-correcting capability increases evolvability by lowering negative constraints.
A) True
B) False
18. True of false: Gap Junctions, important for connecting tissue in morphogenesis, can pass on *only* ion currents.
A) True
B) False
19. According to TAME, the definition of Mind includes…
A) The functional capacity to solve problems
B) Goal pursuit in at least one kind of space
C) Any biological being
D) A and B
20. True or false: Stress, within TAME’s proposals, is to be understood only negatively as only impeding problem solving and healthy operations
A) True
B) False
Michael Levin Bioelectricity 101 Crash Course Lesson 31: TAME: Technological Approach to Mind Everywhere Answer Sheet
1. B
2. B
3. B
4. B
5. D
6. B
7. C
8. B
9. B
10. B
11. B
12. A
13. D
14. C
15. C
16. B
17. A
18. B
19. D
20. B
迈克尔·莱文 生物电 101 速成课程 第31课:TAME:无处不在的心智的技术方法 摘要
迈克尔·莱文 生物电 101 速成课程 第31课:TAME:无处不在的心智的技术方法
在整个课程中,我们探索了生物电的迷人世界,深入研究了电信号如何塑造身体、指导再生,甚至暗示了一种更深层次的细胞通讯形式。 我们已经看到蝾螈如何重新长出头部,青蛙如何被诱导再生四肢,以及癌症如何被视为生物电协调的崩溃。 但是所有这些发现,以及它们所释放的难以置信的潜力,都提出了一个基本问题:我们如何以一种既科学严谨又真正开放的方式来思考这些现象? 我们如何超越狭隘的、以大脑为中心的智能观,拥抱更广泛、更具包容性的视角?
这就是 TAME——无处不在的心智的技术方法——的用武之地。 它不仅仅是关于生物电的事实集合; 它是一个框架,一种看待世界的方式,可以帮助我们理解、互动甚至创造各种形式的智能,无论它们是来自自然进化、人类工程还是两者的结合。
想象一下,你是一位冒险进入未知领域的探险家。 你需要一张地图、一个指南针和一套工具来导航景观并与你发现的任何东西互动。 TAME 就像认知世界的地图、指南针和工具包,这个世界远远超出了熟悉的大脑和神经系统领域。
为什么是“技术的”?
TAME 的“技术的”部分强调一种实用的、动手的方法。 它不是关于抽象的哲学辩论; 它是关于实践。 它是关于构建、测试和操纵系统以了解它们如何工作以及如何改变它们。 这是关于采用工程视角:设计原则是什么? 我们如何预测和控制系统的行为? 关于它的目标结构,可以明确地说些什么?进化如何看待这一点?
可以这样想:汽车修理工不仅仅是思考汽车发动机如何工作; 他们动手实践,把它拆开,把它装回去,然后实验。 TAME 鼓励我们对生物系统做同样的事情,将它们视为复杂的机器(但不是20世纪的机器),可以理解、修改甚至重新编程以实现所需的结果。 而且因为我们现在可以真正地将生物组合在一起,所以一个解释结果的概念方案现在变得非常紧迫。
为什么是“无处不在的心智”?
“无处不在的心智”部分可能是 TAME 最激进的方面。 它挑战了“心智”是复杂大脑(尤其是人脑)独有的东西的传统假设。 相反,TAME 提出各种程度的类心智属性——目标导向活动、信息处理、决策,甚至是基本形式的感知——存在于整个生物世界,甚至超越了生物世界。
这并不意味着岩石和河流像你我一样“有意识”。 但这确实意味着我们不应该自动排除在看起来不像我们的系统中存在某种形式的认知、某种程度的能动性的可能性。“心智”这个概念,作为可以具有极大不同功能水平的过程的总称,有助于我们摆脱这种进化的偏见,即大的、集中的大脑是所有这一切的所在。这是一个问到什么程度的问题,通常只归因于复杂的、口头动物的过程,适用于新的有机体或合成生物学。
考虑一个单细胞生物,比如变形虫。 它没有大脑,但它可以感知环境,向食物移动,避开有害物质,甚至可以从经验中学习。 那是“仅仅是物理学”,还是有更多的东西在起作用? TAME 建议存在一个连续的认知能力谱,从最简单的稳态系统(如恒温器)到我们所知的最复杂的心智(例如,我们人类的心智),变形虫占据了这个连续谱上的某个位置。 很可能,它具有某种程度的心智,其程度和性质适合其生活方式。
可说服性轴:一个关键工具
TAME 框架中的一个核心工具是“可说服性轴”。 这是一种根据你如何改变它们的行为来对系统进行分类的方法。想想看:你只是想让这个东西做某事。怎么做?
在这两个极端之间存在着各种可能性:
关键点是,与系统交互的最佳方式取决于它在这个轴上的位置。 如果你试图用逻辑论证来“说服”一个时钟,你将一无所获。 如果你试图重新连接人脑以改变某人的想法,你不仅会面临伦理和实践挑战,而且还会错过更有效和更强大的沟通方法。
可说服性轴不是一个固定的、静态的东西。 系统可以沿着轴移动。 例如,一个简单的生物体可能会进化出更大的认知能力,变得更容易学习和适应。 或者,受损的大脑可能会失去一些更高级的功能,变得对复杂推理的反应较差。 进化可能会或可能不会逐渐朝任一方向发展,因此这不能称为进化的进展。
作为基础认知的形态发生:一个具体的例子
为了使这些想法更具体,让我们重新审视形态发生——生物体发育和维持其形状的过程。 我们已经在整个课程中看到了这方面的例子:蝌蚪重新排列面部特征,涡虫再生头部,青蛙胚胎纠正出生缺陷。
TAME 鼓励我们将形态发生不仅仅看作是化学信号的复杂舞蹈,而是一种基础认知的形式。 构成发育中生物体的细胞不仅仅是被动地遵循指令; 他们在“形态空间”——可能的形状和结构的空间中积极地解决问题。
想想正在发育的肢体。 细胞需要弄清楚在哪里生长,变成什么样的组织(肌肉、骨骼、皮肤),以及如何将自己排列成一个功能性的肢体。 这不是预先编程的事件序列; 这是一个动态的、适应性的过程。 细胞不断地相互交流,感知它们的环境,并调整它们的行为以实现特定的“目标形态”——肢体的正确形状。
这就是生物电的用武之地。 我们在第 2 课中讨论的缓慢、稳态的电压梯度充当一种“模式记忆”,存储有关目标形态的信息。 这些生物电模式引导细胞,告诉它们去哪里以及做什么,就像蓝图或一套建筑计划一样。 但与静态蓝图不同,这种生物电“蓝图”是动态和适应性的。 它可以响应损伤、环境线索甚至实验操作而改变(正如我们在双头涡虫身上看到的那样)。
扩大认知:间隙连接的作用
那么,每个细胞的认知能力有限,它们如何协同工作来实现这些复杂的形态发生目标呢? 正如我们所讨论的,其中一个关键机制是间隙连接通讯。
间隙连接是连接相邻细胞的微小通道,允许离子和小分子在它们之间直接流动。 这就形成了一种“电网络”,细胞可以在其中共享信息并协调它们的活动。 而且不仅仅是电信息——记住——各种蛋白质、信使信号、应激分子和其他信号,都可以在间隙连接中交换! 它实际上创造了在细胞内部和另一个细胞内部之间的交换——它可以有效地使那些不同的细胞更像一个单一的、更大的主体!
可以把它想象成一群人一起拼图。 如果他们被孤立并且看不到彼此的拼图块,那么完成拼图需要很长时间。 但是,如果他们可以交流、共享信息并协调他们的努力,他们就可以更快、更有效地解决难题。
间隙连接允许细胞做类似的事情。 它们使细胞能够:
实际上,间隙连接允许细胞“汇集它们的资源”并创建一个更大、更有能力的“自我”。 这就是一小群相对简单的细胞如何构建出像人体一样复杂的东西。
影响和未来方向
TAME 框架具有深远的影响,超出了基础生物学领域。 以下是几个例子:
通过生物电和 TAME 框架进行的旅程才刚刚开始。 还有许多未解决的问题和令人兴奋的未来研究途径。 但是,通过采用更广泛、更具包容性的认知观,我们可以解锁对生命、智能和生物系统惊人潜力的新见解。
迈克尔·莱文 生物电 101 速成课程 第31课:TAME:无处不在的心智的技术方法 小测验
1. “TAME”代表什么?
A) 心智探索中的技术进步 (Technological Advancement in Mind Exploration)
B) 无处不在的心智的技术方法 (Technological Approach to Mind Everywhere)
C) 心智涌现的理论分析 (Theoretical Analysis of Mind Emergence)
D) 组织组装和形态发生工程 (Tissue Assembly and Morphogenetic Engineering)
2. TAME 关于认知的核心哲学立场是什么?
A) 认知是一种二元属性——一个系统要么有,要么没有。
B) 认知是一种渐进的属性,存在于一个连续的复杂性谱中。
C) 认知只存在于有大脑的系统中。
D) 认知是一种纯粹的化学现象。
3. TAME 的“技术的”方面强调:
A) 关于心智本质的抽象哲学辩论。
B) 一种理解和操纵认知的实践、实验方法。
C) 使用计算机模拟大脑活动。
D) 开发治疗神经系统疾病的新药。
4. TAME 的“无处不在的心智”方面表明:
A) 所有物理对象都是有意识的。
B) 类心智属性可以在各种系统中找到,而不仅仅是大脑。
C) 只有人类才具有真正的智慧。
D) 植物比动物更聪明。
5. 强调在讨论真正的、功能性认知时我们只关注自然动物的心智概念是什么:
A) 渐进主义。
B) 系统发育。
C) 工程。
D) 进化偏见。
6. “可说服性轴”根据以下哪一项对系统进行分类?
A) 它们的物理大小和复杂性。
B) 改变其行为的最佳方式。
C) 它们的进化历史。
D) 它们执行特定任务的能力,例如解决迷宫。
7. 以下哪一项是“可说服性轴”的“重新布线”端的系统示例?
A) 训练有素的狗
B) 人类
C) 机械钟
D) 恒温器
8. 根据 TAME,形态发生可以被视为一种:
A) 随机化学反应。
B) 基础认知,细胞在形态空间中解决问题。
C) 纯粹的基因编程。
D) 魔法。
9. 根据 TAME,缓慢、稳态的生物电梯度在形态发生中起什么作用?
A) 它们充当快速通信信号,就像动作电位一样。
B) 它们存储有关目标形态的信息,就像“模式记忆”一样。
C) 它们不起作用; 形态发生纯粹是化学的。
D) 它们只控制肌肉的运动。
10. 间隙连接通过以下哪一项来促进认知的扩大:
A) 阻止细胞相互交流。
B) 允许细胞共享信息并协调它们的活动。
C) 产生快速的动作电位。
D) 阻止离子流过细胞膜。
11. 根据TAME,什么是自我?
A) 任何在物理上类似于地球动物的东西。
B) 作为大规模偏好、记忆、压力、目标的功能场所的系统。
C) 进行复杂物理动作的系统,例如生长腿,由基因水平决定。
D) 大脑
12. 对或错:TAME 建议我们可以向生物系统学习以构建更好的人工智能。
A) 对
B) 错
13. TAME 框架对以下哪些领域有潜在影响?
A) 再生医学
B) 进化生物学
C) 伦理学
D) 以上都是
14. 在形态发生的背景下,“形态空间”是什么意思?
A) 生物体进入外太空的地方。
B) 生物组织发送生物电信号的地方。
C) 任何生物系统可能发展成的各种可能的物理形状和结构的“空间”。
D) 组织如何思考。
15. 用于显示所有系统如何属于认知谱的例子:
A) 生物电路。
B) 离子通道。
C) 可说服性轴
D) 间隙连接
16. “认知光锥”是指:
A) 仅用于神经元之间通信的结构
B) 任何给定系统中的信息、感知和活动的规模、范围和范围
C) 看到和使用光的能力
D) 在青蛙蝌蚪实验中生长在奇怪地方的眼睛。
17. 对或错:多尺度能力架构解释说,拥有具有纠错能力的部件、模块和系统,通过降低负面约束来增加可进化性。
A) 正确
B) 错误
18. 对或错:间隙连接,对于连接形态发生中的组织很重要,只能传递离子电流。
A) 对
B) 错
19. 根据TAME,Mind的定义包括……
A) 解决问题的功能能力
B) 至少在一种空间中追求目标
C) 任何生物
D) A 和 B
20. 对或错:在TAME的建议中,压力只能被理解为负面的,因为它只会阻碍问题的解决和健康运作
A) 正确
B) 错误
迈克尔·莱文 生物电 101 速成课程 第31课:TAME:无处不在的心智的技术方法 答案表
1. B
2. B
3. B
4. B
5. D
6. B
7. C
8. B
9. B
10. B
11. B
12. A
13. D
14. C
15. C
16. B
17. A
18. B
19. D
20. B