Michael Levin Bioelectricity 101 Crash Course Lesson 28: Basal Cognition: Understanding “Thinking” Cells Summary
- Basal cognition refers to the idea that even simple organisms, and even individual cells, exhibit cognitive-like behaviors.
- This doesn’t mean cells have human-like consciousness or thoughts. Instead, it means they can sense, process, and respond to information in adaptive ways.
- These adaptive behaviors include things like learning, memory, decision-making, and problem-solving, even in non-neural systems.
- Bioelectricity plays a key role in basal cognition, providing a mechanism for information processing and control outside the brain.
- Examples of basal cognition include habituation in single-celled organisms, associative learning in gene regulatory networks, and the goal-directed behavior of tissues during regeneration.
- The concept of basal cognition challenges the traditional view that cognition is limited to animals with complex nervous systems.
- It suggests that cognition may be a fundamental property of life, appearing in various forms across different scales of biological organization.
- This helps to solve a major issue, which how does one trace “intelligence”. Is there a cut-off point for complex enough brains? Or is there something inherent even before this, within all cells and tissues, scaling upwards? Basal Cognition favors this later explanation.
Michael Levin Bioelectricity 101 Crash Course Lesson 28: Basal Cognition: Understanding “Thinking” Cells
The word “cognition” usually makes us think of things like thinking, reasoning, learning, and remembering – abilities we associate with humans and perhaps other animals with complex brains. But what if those abilities, or at least simpler versions of them, exist in places we wouldn’t expect? What if even individual cells can, in some sense, “think”? That’s the core idea behind basal cognition.
It’s important to be very clear about what we don’t mean here. We’re not suggesting that cells have human-like consciousness, subjective experiences, or complex thoughts. We’re not saying that a skin cell is pondering the meaning of life! But what scientists like Michael Levin are suggesting is that even very simple organisms, and even individual cells within those organisms, can exhibit behaviors that look surprisingly cognitive-like.
What does “cognitive-like” mean in this context? It means that these cells can:
- Sense information from their environment.
- Process that information in some way.
- Respond to that information in an adaptive way – a way that helps them survive and thrive.
This might involve things like:
- Habituation: Learning to ignore a repeated, harmless stimulus (like a cell getting used to a particular chemical concentration).
- Sensitization: Becoming more responsive to a stimulus after a strong or noxious experience.
- Associative learning: Learning to associate two different stimuli (like Pavlov’s dogs learning to associate a bell with food).
- Decision-making: Choosing between different courses of action based on available information.
- Problem-solving: Finding ways to overcome obstacles or achieve goals.
These are all abilities that we typically associate with brains, but there’s growing evidence that they can also occur in non-neural systems, even in single-celled organisms.
How is this possible without a brain? The key, as we’ve explored in previous lessons, lies in the complex interplay of chemical and electrical signals within cells and tissues. Bioelectricity, in particular, provides a powerful mechanism for information processing and control, even in the absence of neurons.
Think back to the analogy of a computer. A computer uses electrical signals to process information and perform calculations. The transistors in a computer are like switches that can be turned on or off, creating patterns of electrical activity that represent information. Similarly, ion channels in cells can act as biological “switches,” controlling the flow of ions and creating patterns of electrical activity that can encode information and guide cellular behavior.
It’s not that cells are exactly like computers, but the analogy helps us understand how they can perform complex computations without a nervous system. They’re using a different kind of “hardware” (ion channels, membrane potential, etc.), but the underlying principle – using electrical signals to process information – is similar.
Let’s look at some specific examples of basal cognition:
- Habituation in Stentor: Stentor is a single-celled organism, a type of ciliate. If you repeatedly poke a Stentor, it will initially contract (its defensive response). But after a while, it will stop contracting – it has learned to ignore the repeated, harmless stimulus. This is a simple form of learning, and it doesn’t require a brain.
- Associative learning in gene regulatory networks: As we saw in an earlier lesson (Lesson 36), even simple networks of genes can exhibit behaviors that look like associative learning. They can be “trained” using protocols similar to those used to train animals, showing that even the basic building blocks of life can perform surprisingly complex computations.
- Goal-directed behavior of tissues during regeneration: When a planarian worm is cut in half, each piece regenerates into a complete worm. This isn’t just random growth; the cells “know” what the original shape of the worm was, and they actively work to restore that shape. This is a form of problem-solving at the tissue level, guided by bioelectrical signals.
- Xenobots: As before covered, freed skin cells form a whole other shape and functionality, a brand new “bot.” This bot is made of skin cells, but through basal congnition can move about.
- Anthrobots: Human tracheal cells have a default setting for development…but as explored before, once outside of this normal, can do totally unexpected tasks.
These examples show that cognition isn’t some magical property that suddenly appears with complex brains. It’s a fundamental property of life, appearing in various forms at different scales of biological organization, from single cells to tissues to whole organisms. Basal cognition isn’t just about the brain’s capacity to perform logic; it’s about the bioelectric activity and information-processing going on even at single-celled units. It is about this problem-solving abillity, found everywhere.
This concept of basal cognition is a major departure from the traditional view, which tends to draw a sharp line between “intelligent” animals with brains and “mindless” organisms without them. Levin and others are arguing that this line is artificial and that we should instead think of cognition as a continuum, with different levels of complexity appearing across different scales of life.
This also, importantly, solves the very great debate about “what level of brain is inteligent.” A mouse brain is simpler than a human brain, for example. Is it unintelligent, while ours is intelligent? At what point is this divide, if true? A simpler, more logical solution, supported by scientific experimentation as explored by Levin and company, suggests that the capacity exists all the way down, and brains and cogniton merely scales upward, and our minds and animal brains and human constructs like AI are mere variations on this, that all come back to single-celled information processing.
This perspective has profound implications for how we understand life, intelligence, and even consciousness. It suggests that we should be more open to the possibility of “intelligence” in unexpected places and that we should be careful not to underestimate the cognitive capacities of even the simplest organisms. It also raises ethical questions about how we treat other living things, even those that don’t have brains like ours.
The study of basal cognition is still in its early stages, and there’s much we don’t yet understand. But it’s a rapidly growing field, and it’s transforming our understanding of what it means to be “alive” and “intelligent.”
Michael Levin Bioelectricity 101 Crash Course Lesson 28: Basal Cognition: Understanding “Thinking” Cells Quiz
1. Basal cognition refers to:
A) The cognitive abilities of humans and other animals with complex brains.
B) Cognitive-like behaviors exhibited by simple organisms and even individual cells.
C) The study of the brain’s basal ganglia.
D) A type of meditation technique.
2. Which of the following is NOT an example of a cognitive-like behavior that can be exhibited in basal cognition?
A) Habituation
B) Photosynthesis
C) Associative learning
D) Decision-making
3. Bioelectricity plays a key role in basal cognition by:
A) Providing a mechanism for information processing and control outside the brain.
B) Generating action potentials in neurons.
C) Transmitting chemical signals between cells.
D) Encoding genetic information in DNA.
4. The single-celled organism Stentor exhibits which form of basal cognition?
A) Sensitization
B) Habituation
C) Associative learning
D) Problem-solving
5. True or False: Basal cognition implies that cells have human-like consciousness and thoughts.
A) True
B) False
6. Gene regulatory networks have been shown to exhibit:
A) Only simple, reflexive behaviors.
B) Behaviors similar to associative learning.
C) No cognitive-like abilities whatsoever.
D) The ability to perform complex mathematical calculations.
7. The goal-directed behavior of tissues during planarian regeneration is an example of:
A) Problem-solving at the tissue level.
B) Simple, random growth.
C) A purely chemical process with no bioelectrical component.
D) The action of the nervous system.
8. The concept of basal cognition challenges the traditional view that:
A) Cognition is limited to animals with complex nervous systems.
B) Bioelectricity plays a role in cellular communication.
C) Cells can sense and respond to their environment.
D) Genes influence behavior.
9. Which of the following is an analogy used to explain how cells can perform computations without a nervous system?
A) A light switch
B) A computer
C) A thermostat
D) A topographical map
10. Ion channels in cells can act as:
A) Biological “batteries”
B) Biological “switches”
C) Biological “wires”
D) Biological “hormones”
11. The examples of Xenobots and Anthrobots showcases basal cognition through:
A) They are brand-new artificial organisms
B) Skin and tracheal cells showcasing behaviors far outside their original purpose
C) A philosophical thought exercise
D) None of the above.
12. Basal cognition suggests that cognition may be a _______ property of life.
A) Recent
B) Fundamental
C) Rare
D) Unimportant
13. True or False: Michael Levin’s viewpoint traces a single beginning point to “true cognition.”
A) True
B) False
14. Adaptive behaviors related to basal cognition involve all EXCEPT:
A) Complex reasoning
B) Learning
C) Responding to one’s environment
D) Memory.
15. Bioelectricity in relation to single cells most assists with the issue of
A) Sensing its outside environment
B) Basic problem solving capabilities
C) Reproduction and dividing
D) All of the above.
16. Which concept best contrasts basal congnition as described?
A) A spectrum of cognition across all scales
B) A cut-off point between simple life vs the ‘truly’ thinking entities
C) Only the non-neural types of life can be cognitive-like
D) Basal Cognition concerns itself with how complex a brain is.
17. Basal Cognition could possibly have great affects for future science fields because
A) It showcases intelligence and capability even within a few basic building components, all the way up to human brains and AI.
B) The fields of regeneration medicine and the growth/repair of entire limbs
C) Cancer can be explored.
D) All of the Above.
18. A cell can process information from the outside environment to some degree.
A) True
B) False.
19. Compared to advanced thinking from a human being or the commands a complex neural system could manage, a cell still may exhibit
A) Adaptation
B) Sensation and Perception of outside information
C) Goal setting.
D) All of The Above.
20. Michael Levin supports what about cognition?
A) Only specialized organisms, including the nervous systems, have any cogntition
B) Cognition comes about at advanced complex parts of life and tissues.
C) Cognition extends downward, at simple parts of even a single unit of life such as a cell
D) A and B.
Michael Levin Bioelectricity 101 Crash Course Lesson 28: Basal Cognition: Understanding “Thinking” Cells Answer Sheet
1. B
2. B
3. A
4. B
5. B
6. B
7. A
8. A
9. B
10. B
11. B
12. B
13. B
14. A
15. D
16. B
17. D
18. A
19. D
20. C
迈克尔·莱文 生物电 101 速成课程 第28课:基础认知:理解“思考”的细胞 摘要
- 基础认知指的是即使是简单的生物体,甚至单个细胞,也会表现出类似认知的行为。
- 这并不意味着细胞具有类似人类的意识或思想。 相反,这意味着它们可以以适应性的方式感知、处理和响应信息。
- 这些适应性行为包括学习、记忆、决策和解决问题,即使在非神经系统中也是如此。
- 生物电在基础认知中起着关键作用,提供了一种在大脑之外进行信息处理和控制的机制。
- 基础认知的例子包括单细胞生物的习惯化、基因调控网络中的联想学习,以及再生过程中组织的定向行为。
- 基础认知的概念挑战了传统的观点,即认知仅限于具有复杂神经系统的动物。
- 它表明认知可能是生命的基本属性,以各种形式出现在不同的生物组织尺度上。
- 这有助于解决一个主要问题,即如何追踪“智力”。 是否存在足够复杂的大脑的临界点? 或者在此之前,所有细胞和组织中是否存在某种固有的东西,并不断向上扩展? 基础认知更倾向于后一种解释。
迈克尔·莱文 生物电 101 速成课程 第28课:基础认知:理解“思考”的细胞
“认知”这个词通常让我们想起思考、推理、学习和记忆——这些能力我们通常与人类和可能具有复杂大脑的其他动物联系在一起。 但是,如果这些能力,或者至少是它们的更简单版本,存在于我们意想不到的地方呢? 如果即使是单个细胞也能在某种意义上“思考”呢? 这就是基础认知的核心思想。
重要的是要非常清楚我们不是指什么。 我们并不是说细胞具有类似人类的意识、主观体验或复杂的思想。 我们并不是说皮肤细胞正在思考生命的意义! 但是像迈克尔·莱文这样的科学家所表明的是,即使是非常简单的生物体,甚至是这些生物体内的单个细胞,也能表现出令人惊讶的类似认知的行为。
在这种情况下,“类似认知”是什么意思? 这意味着这些细胞可以:
- 感知来自其环境的信息。
- 以某种方式处理该信息。
- 以一种适应性的方式响应该信息——这种方式有助于它们生存和繁荣。
这可能包括以下内容:
- 习惯化: 学会忽略重复的、无害的刺激(就像细胞习惯于特定的化学浓度)。
- 敏化: 在经历强烈或有害的体验后,对刺激变得更敏感。
- 联想学习: 学会将两种不同的刺激联系起来(就像巴甫洛夫的狗学会将铃声与食物联系起来一样)。
- 决策: 根据可用信息在不同的行动方案之间做出选择。
- 解决问题: 找到克服障碍或实现目标的方法。
这些都是我们通常与大脑联系在一起的能力,但越来越多的证据表明,它们也可以发生在非神经系统中,甚至在单细胞生物中。
没有大脑怎么可能做到这一点? 正如我们在前面的课程中探讨的那样,关键在于细胞和组织内化学和电信号的复杂相互作用。 特别是,生物电提供了一种强大的信息处理和控制机制,即使在没有神经元的情况下也是如此。
回想一下计算机的类比。 计算机使用电信号来处理信息和执行计算。 计算机中的晶体管就像可以打开或关闭的开关,产生代表信息的电活动模式。 类似地,细胞中的离子通道可以充当生物“开关”,控制离子的流动并产生可以编码信息和指导细胞行为的电活动模式。
这并不是说细胞完全像计算机,但这个类比有助于我们理解它们如何在没有神经系统的情况下执行复杂的计算。 他们使用的是一种不同的“硬件”(离子通道、膜电位等),但基本原理——使用电信号处理信息——是相似的。
让我们来看看基础认知的一些具体例子:
- 喇叭虫 (Stentor) 的习惯化: Stentor 是一种单细胞生物,一种纤毛虫。 如果你反复戳一个 Stentor,它最初会收缩(它的防御反应)。 但过了一会儿,它会停止收缩——它已经学会了忽略重复的、无害的刺激。 这是一种简单的学习形式,不需要大脑。
- 基因调控网络中的联想学习: 正如我们在前面的课程(第 36 课)中看到的那样,即使是简单的基因网络也可以表现出类似联想学习的行为。 可以使用类似于训练动物的方案对它们进行“训练”,这表明即使是生命的基本组成部分也可以执行令人惊讶的复杂计算。
- 涡虫再生过程中组织的定向行为: 当涡虫被切成两半时,每一块都会再生为一个完整的蠕虫。 这不仅仅是随机生长; 细胞“知道”蠕虫的原始形状是什么,并且它们积极地努力恢复这种形状。 这是组织层面上的一种问题解决形式,由生物电信号引导。
- 异种机器人 (Xenobots): 如前所述, 释放的皮肤细胞会形成另一种完全不同的形状和功能,一个全新的“机器人”。 这个机器人是由皮肤细胞制成的,但通过基础认知可以四处移动。
- 人源机器人 (Anthrobots): 人类气管细胞具有默认的发育设置……但正如之前所探讨的,一旦脱离这种常态,就可以执行完全意想不到的任务。
这些例子表明,认知并不是随着复杂大脑突然出现的某种神奇属性。 它是生命的基本属性,以各种形式出现在不同的生物组织尺度上,从单细胞到组织再到整个生物体。 基础认知不仅仅关乎大脑执行逻辑的能力; 它还关乎即使在单细胞单位中也在进行的生物电活动和信息处理。 这是关于这种无处不在的解决问题的能力。
这种基础认知的概念与传统观点大相径庭,传统观点倾向于在具有大脑的“智能”动物和没有大脑的“无意识”生物之间划清界限。 莱文等人认为这条线是人为的,我们应该将认知视为一个连续体,不同复杂程度的认知出现在不同的生命尺度上。
此外,更重要的是,这解决了一个非常重要的争论,即“什么程度的大脑才是智能的”。例如,老鼠的大脑比人类的大脑简单。 它是低智商,而我们是高智商吗? 如果是真的,这个分界点在哪里? 莱文等人通过科学实验探索支持的一个更简单、更合乎逻辑的解决方案表明,这种能力一直存在,而大脑和认知只是向上扩展,我们的思想、动物大脑和人工智能等人类构造只是这种能力的变化,所有这些都归结为单细胞信息处理。
这种观点对我们如何理解生命、智力和意识具有深远的意义。 它表明我们应该更开放地接受意想不到的地方存在“智力”的可能性,并且我们应该小心不要低估即使是最简单的生物体的认知能力。 它还提出了关于我们如何对待其他生物(即使是那些没有像我们这样的大脑的生物)的伦理问题。
基础认知的研究仍处于早期阶段,我们还有很多不了解的地方。 但这是一个快速发展的领域,它正在改变我们对“活着”和“智能”的含义的理解。
迈克尔·莱文 生物电 101 速成课程 第28课:基础认知:理解“思考”的细胞 小测验
1. 基础认知是指:
A) 人类和其他具有复杂大脑的动物的认知能力。
B) 简单生物甚至单个细胞表现出的类似认知的行为。
C) 对大脑基底神经节的研究。
D) 一种冥想技巧。
2. 以下哪一项不是基础认知中可以表现出的类似认知行为的例子?
A) 习惯化
B) 光合作用
C) 联想学习
D) 决策
3. 生物电在基础认知中起着关键作用,通过:
A) 提供一种在大脑之外进行信息处理和控制的机制。
B) 在神经元中产生动作电位。
C) 在细胞之间传递化学信号。
D) 在 DNA 中编码遗传信息。
4. 单细胞生物喇叭虫表现出哪种形式的基础认知?
A) 敏化
B) 习惯化
C) 联想学习
D) 解决问题
5. 对或错:基础认知意味着细胞具有类似人类的意识和思想。
A) 对
B) 错
6. 基因调控网络已被证明表现出:
A) 只有简单的、反射性的行为。
B) 类似于联想学习的行为。
C) 根本没有类似认知的能力。
D) 执行复杂数学计算的能力。
7. 涡虫再生过程中组织的定向行为是以下哪一项的一个例子:
A) 组织层面的问题解决。
B) 简单的、随机的生长。
C) 一个纯粹的化学过程,没有生物电成分。
D) 神经系统的作用。
8. 基础认知的概念挑战了以下传统观点:
A) 认知仅限于具有复杂神经系统的动物。
B) 生物电在细胞通讯中起作用。
C) 细胞可以感知和响应其环境。
D) 基因影响行为。
9. 以下哪一项是用于解释细胞如何在没有神经系统的情况下执行计算的类比?
A) 电灯开关
B) 计算机
C) 恒温器
D) 地形图
10. 细胞中的离子通道可以充当:
A) 生物“电池”
B) 生物“开关”
C) 生物“电线”
D) 生物“激素”
11. 异种机器人和人源机器人的例子通过以下方式展示了基础认知:
A) 它们是全新的生物
B) 皮肤和气管细胞表现出远远超出其原始目的的行为
C) 一种哲学思想实验
D) 以上都不是。
12. 基础认知表明认知可能是生命的一种_______属性。
A) 最近的
B) 基本的
C) 罕见的
D) 不重要的
13. 对或错:迈克尔·莱文的观点追溯了“真正认知”的唯一起点。
A) 正确
B) 错误
14. 与基础认知相关的适应性行为不包括:
A) 复杂推理
B) 学习
C) 响应环境
D) 记忆。
15. 与单细胞相关的生物电最有助于解决以下问题:
A) 感知其外部环境
B) 基本的问题解决能力
C) 繁殖和分裂
D) 以上都是。
16. 哪个概念与所描述的基础认知形成最鲜明的对比?
A) 跨所有尺度的认知范围
B) 简单生命与“真正”思考实体之间的临界点
C) 只有非神经类型的生命才能具有类似认知的能力
D) 基础认知关注大脑的复杂程度。
17. 基础认知可能会对未来的科学领域产生重大影响,因为
A) 它展示了即使在一些基本构建组件中也存在智力和能力,一直到人类大脑和人工智能。
B) 再生医学和整个四肢的生长/修复领域
C) 可以探索癌症。
D) 以上都是。
18. 细胞可以在一定程度上处理来自外部环境的信息。
A) 对
B) 错。
19. 与人类的高级思维或复杂神经系统可以管理的命令相比,细胞仍然可以表现出
A) 适应
B) 感知和感知外部信息
C) 目标设定。
D) 以上都是。
20. 迈克尔·莱文支持关于认知的什么观点?
A) 只有特化的生物体,包括神经系统,才有任何认知能力
B) 认知产生于生命和组织的先进复杂部分。
C) 认知向下延伸,存在于甚至像细胞这样的单个生命单位的简单部分中
D) A 和 B。
迈克尔·莱文 生物电 101 速成课程 第28课:基础认知:理解“思考”的细胞 答案表
1. B
2. B
3. A
4. B
5. B
6. B
7. A
8. A
9. B
10. B
11. B
12. B
13. B
14. A
15. D
16. B
17. D
18. A
19. D
20. C