Michael Levin Bioelectricity 101 Crash Course Lesson 27: Cognitive Light Cones: Cellular “Goals” and Decision-Making

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 27: Cognitive Light Cones: Cellular “Goals” and Decision-Making Summary

  • The “Cognitive Light Cone” is a conceptual tool for understanding the scope of information and action available to a biological system (from a single cell to a whole organism). It defines the region in some “problem-space” or “goal” that is within reach given the computational limits.
  • It’s inspired by the concept of a “light cone” in physics, which defines the region of spacetime that can be influenced by, or can influence, a particular event.
  • A cell’s cognitive light cone encompasses the range of environmental factors it can sense, the internal states it can represent, and the actions it can take to influence its environment.
  • Smaller, simpler systems (like individual cells) have smaller cognitive light cones, meaning they can sense and respond to a limited range of factors, and their goals are typically focused on immediate survival and local conditions.
  • Larger, more complex systems (like multicellular tissues or organisms) have larger cognitive light cones, allowing them to sense and respond to a wider range of factors, pursue more complex goals, and plan over longer time scales.
  • Bioelectric signaling plays a crucial role in expanding the cognitive light cone of cells and tissues. Gap junctions, for example, allow cells to share information and coordinate their actions, effectively increasing their collective sensing and acting capacity.
  • Cancer can be viewed as a shrinkage of the cognitive light cone, where cells revert to more selfish, single-cell-level goals, losing their connection to the larger collective.
  • Understanding cognitive light cones helps us to frame how cells and tissues make “decisions” – not necessarily conscious decisions, but rather adaptive choices that move them towards their goals within their perceptual and actionable space.
  • Cognitive light cones imply that goals aren’t abstract, high-level goals but are defined within a “goal space” appropriate to the size and abilities.
  • The term does not have anything to do with actual “light”.

Michael Levin Bioelectricity 101 Crash Course Lesson 27: Cognitive Light Cones: Cellular “Goals” and Decision-Making

In previous lessons, we’ve discussed how cells aren’t just passive components following genetic instructions. They’re active, dynamic systems that respond to signals from their environment, including bioelectric signals. We’ve also introduced the idea of collective intelligence – how groups of cells can work together to achieve outcomes that individual cells couldn’t manage on their own. Now, we’re going to take another conceptual leap and explore a framework for understanding how cells and tissues can be said to have “goals” and make “decisions,” even if they don’t have brains or consciousness in the way we normally think of them. This framework is based on the concept of a “cognitive light cone.”

The term “light cone” might sound intimidating, but it’s actually a relatively simple idea, borrowed from physics. In physics, a light cone represents the region of spacetime that can be affected by, or can affect, a particular event. Imagine a flash of light. The light spreads out in all directions, forming an expanding sphere. The light cone represents the boundary of that sphere – everything inside the cone can be reached by the light, and everything outside the cone cannot. The idea represents fundamental limits on any signals at all. It cannot propogate past this “barrier”.

Now, let’s translate this idea to the realm of biology and cognition. A cognitive light cone represents the “sphere of influence” of a biological system – the range of factors it can sense, the internal states it can represent, and the actions it can take to influence its environment. It’s a way of visualizing the scope of a system’s “awareness” and “agency.” It’s not about actual light; that is just where the metaphor came from, so don’t imagine a literal beam of light going from the organism! The important question will be what the scale, spatially, is that that “agent” covers?, and What information and options of “choice”, then, can that system react to?

Think of it like this:

  • A single bacterium has a very small cognitive light cone. It can sense things like the concentration of nutrients or toxins in its immediate vicinity. Its “goals” are simple: find food, avoid danger, divide. Its actions are limited to things like swimming towards or away from a chemical gradient. It’s aware, very directly, of only immediate “here-and-now”.
  • A multicellular tissue, on the other hand, has a larger cognitive light cone. The cells within the tissue can communicate with each other, share information, and coordinate their actions. They can sense things over a larger area, represent more complex internal states, and pursue more complex goals, like building a specific organ shape or regenerating a lost limb. It spans larger chunks of space and time.
  • A whole organism, like a frog or a human, has an even larger cognitive light cone. It can sense things across its entire body, integrate information from multiple senses, remember past events, anticipate future events, and plan complex actions to achieve long-term goals.

The size of a system’s cognitive light cone is related to its complexity and its level of organization. The more complex a system is, and the more integrated its components are, the larger its cognitive light cone tends to be.

Now, how does bioelectricity fit into this picture? Bioelectric signaling plays a crucial role in expanding the cognitive light cone of cells and tissues. Here’s how:

  • Gap Junctions: As we learned in Lesson 6, gap junctions are direct channels that connect the cytoplasm of adjacent cells. They allow ions and small molecules to flow between cells, effectively creating a shared electrical environment. This means that cells connected by gap junctions can share information and coordinate their behavior. This expands their collective sensing and acting capacity – their cognitive light cone becomes larger than the sum of the individual cells’ light cones. They can make decisions that are more “aware” of what their cells will do; more coordinated with it.
  • Voltage Gradients: Bioelectric gradients, as we’ve discussed, can act as signals that guide cell behavior. By sensing these gradients, cells can gain information about their position within a tissue and adjust their behavior accordingly. This extends their “awareness” beyond their immediate surroundings. They respond, then, to more global signals of the body’s state.
  • Long-Range Signaling: Bioelectric signals can propagate over relatively long distances within tissues, allowing cells to communicate even if they’re not directly touching. This further expands the cognitive light cone, allowing for coordinated behavior across the entire tissue or even the whole organism. This is communication that cannot be described fully as simply chemical signaling.

Let’s consider some specific examples of how cognitive light cones play out in biological systems:

  • Planarian Regeneration: As we’ve seen, planarians can regenerate their entire body from a small fragment. This requires that the cells in the fragment “know” what’s missing and how to rebuild it. The fragment’s cognitive light cone encompasses the entire original body plan, even though it’s only a small piece of the original worm. The cells are not simply “pushed around”, and some models don’t sufficiently take into account the key point of: The parts that make up the “fragment” act in respect to its knowledge of other, distant cells and body-parts!
  • Frog Limb Regeneration: When a frog loses a limb, the cells at the wound site need to coordinate their actions to regrow the missing limb. This involves sensing the extent of the damage, activating the appropriate growth programs, and guiding the formation of the new limb structures. The cognitive light cone of the regenerating tissue encompasses the “goal” of rebuilding a functional limb. And signals for this regeneration and growth do not emanate chemically (which implies very local, limited cell-cell effects). Whole electric gradients across entire body part areas may set regeneration states.
  • Cancer as a Shrinkage of the Cognitive Light Cone: Cancer can be viewed as a breakdown of collective control. Cancer cells lose their connection to the larger tissue and revert to more “selfish,” single-cell-level goals, like uncontrolled proliferation and migration. Their cognitive light cone shrinks, focusing only on their immediate survival and growth, at the expense of the organism as a whole. Cells detach, literally losing bioelectrical communication, going from one level of tissue cooperation and organization down to the cell-scale “goal”.
  • Anthrobots New, fascinating kinds of engineered “living robots”. Once given some freedom, these self-organize, behaving as whole agents, making surprising morphological decisions. The resulting collective is something fundamentally new – beyond cells!

It’s important to emphasize that when we talk about cells or tissues having “goals” and making “decisions,” we’re not implying that they have conscious intentions in the way that humans do. We’re using these terms in a more functional sense, to describe the adaptive, goal-directed behavior that emerges from the complex interactions within these systems. The “goal space” depends on the particular organism. The behavior of parts and their connection in these systems suggest the value of using frameworks from human behavior.

Understanding cognitive light cones provides a powerful framework for thinking about how biological systems operate at different scales. It helps us to bridge the gap between the molecular level (genes, proteins, ion channels) and the macroscopic level (tissue shape, organ function, organism behavior). It also provides a new perspective on diseases like cancer and opens up exciting possibilities for regenerative medicine and synthetic bioengineering. By learning to “read” and “write” the bioelectric code, and by understanding how cognitive light cones are shaped and controlled, we can potentially gain unprecedented control over biological form and function.


Michael Levin Bioelectricity 101 Crash Course Lesson 27: Cognitive Light Cones: Cellular “Goals” and Decision-Making Quiz

1. What is a “cognitive light cone” (in the context of biology)?

A) The region of spacetime that can be affected by a flash of light.
B) The range of factors a biological system can sense and the actions it can take.
C) The visual field of an organism.
D) A type of neuron found in the brain.

2. Smaller, simpler biological systems tend to have:

A) Larger cognitive light cones.
B) Smaller cognitive light cones.
C) No cognitive light cone.
D) The same size cognitive light cone as larger systems.

3. Larger, more complex biological systems tend to have:

A) Larger cognitive light cones.
B) Smaller cognitive light cones.
C) No cognitive light cone.
D) The same size cognitive light cone as smaller systems.

4. How does bioelectric signaling contribute to the size of a cell or tissue’s cognitive light cone?

A) It has no effect.
B) It shrinks the cognitive light cone.
C) It expands the cognitive light cone by allowing cells to communicate and coordinate.
D) It only affects the cognitive light cone of single-celled organisms.

5. Which cellular structure plays a crucial role in expanding the cognitive light cone through direct cell-cell communication?

A) Mitochondria
B) Ribosomes
C) Gap junctions
D) The nucleus

6. In the context of this lesson, what might cancer be viewed as?

A) An expansion of the cognitive light cone.
B) A shrinkage of the cognitive light cone.
C) A complete loss of the cognitive light cone.
D) An unrelated phenomenon.

7. When we talk about cells having “goals,” are we implying that they have conscious intentions?

A) Yes, cells are fully conscious.
B) No, we’re using the term in a functional sense to describe adaptive, goal-directed behavior.
C) Only some cells, like neurons, have goals.
D) Cells don’t have goals; they only follow genetic instructions.

8. The “cognitive light cone” concept helps us to understand:

A) How cells communicate using light.
B) The limits of a system’s ability to interact with its environment
C) The speed of nerve impulses.
D) The structure of DNA.

9. What would best represents what a bacterial cell’s cognitive light cone encompasses, and be most focused on?

A) Reaching long-distance and coordinating complex limbs
B) Sensation, and how this drives proliferation or not
C) How to seek immediate goals in its micro-environment
D) Repair of whole-body regeneration, and coordinating it

10. True or False: the idea of a cognitive light cone says that larger biological structures have no way of increasing their awarness of larger spans of area.

A) True
B) False

11. True or False: bioelectricity isn’t involved in any capacity in creating an increased ability of an cell or structure to affect a wider “light cone”.

A) True
B) False

12. True/False, planaria fragment that successfully regenerate must only use cells, molecules, within the bounds of the local cell damage:

A) True
B) False

13. Does an Ant colony display “intelligence”?

A) Yes, through division of labor and self-organization
B) Yes, because ant queens direct the actions
C) No, colonies do not, by definition, display intelligent features
D) None of the Above

14. Anthrobots represent which kind of structure, relative to tissues and to fully functioning animals?

A) Above both animals and cells, exhibiting super-human level cognitive processing power
B) “Less” than both – being completely non-functioning
C) Below both. They are less dynamic or functional than an organ.
D) None of the above.

15. What example shows us *evidence* of cell intelligence that *cannot* be explained by solely simple genetic factors or chemistry of molecular diffusion, suggesting it involves additional complexity to model their activities.

A) Cancer’s reversal through electrical signal manipulation, even reversing certain strong, known genetically based changes
B) The Planaria’s Ability to “Remember” and Fully Regenerate, No Matter Where It’s Cut.
C) Bioelectrical “Memories” Controlling Body Plans.
D) All of the Above.

16. How do the cells achieve making changes on their tissue in relation to signals they sense about morphogenic and/or developmental change?

A) Only the brain can do such
B) It’s due to genes
C) Voltage gradients acting across distances are one possible way for a “light cone” expansion to guide such shifts
D) Unknown; It simply must only involve purely chemical factors such as molecules floating over

17. When bioelectricity is manipulated and it affects morphology, what level best describes its capacity of what its doing?

A) It influences genes
B) It influences shape
C) A and B
D) None of the above

18. Why would increasing communication through gap-junctions likely *increase* cognitive capacities of a cellular system?

A) Gap Junctions only can share very simple chemcial gradients.
B) It increases “sharing” or coordination of cells, thus improving how many can communicate – more “cells, better behavior”.
C) They only connect directly adjacent neighboring cells.
D) All of the above.

19. Why could you describe cells making “decisions” despite them being non-neural?

A) They might make different reactions based on sensed signals of the area they are in; and that difference will in turn change cell actions/movement
B) “Decisions” should only ever refer to brainy animals such as chimps and not things like morphogenesis
C) You shouldn’t
D) All cells behave completely in lockstep, as determined by pure genetic or epigenetic, static states; There are never choices or adaptive movements

20. Which kind of biological organization has been described in the prior Lessons (and research covered) that also show voltage based decision-making with emergent cognition, like bioelectricity, which is *neither* animal/frog cells or human cells?

A) Microbes, in communities/biofilms
B) Gene Regulatory networks
C) Planeria (a kind of flat worm)
D) All of the above


Michael Levin Bioelectricity 101 Crash Course Lesson 27: Cognitive Light Cones: Cellular “Goals” and Decision-Making Answer Sheet

1. B

2. B

3. A

4. C

5. C

6. B

7. B

8. B

9. C

10. B

11. B

12. B

13. A

14. D

15. D

16. C

17. C

18. B

19. A

20. D


迈克尔·莱文 生物电 101 速成课程 第27课:认知光锥:细胞的“目标”和决策 摘要

  • “认知光锥”是一种概念工具,用于理解生物系统(从单个细胞到整个生物体)可用的信息和行动范围。它定义了在给定计算限制下,在某些“问题空间”或“目标”中可以达到的区域。
  • 它的灵感来自物理学中的“光锥”概念,光锥定义了可以被特定事件影响或可以影响特定事件的时空区域。
  • 细胞的认知光锥包括它可以感知的环境因素范围、它可以表示的内部状态以及它可以采取的影响其环境的行动。
  • 较小、较简单的系统(如单个细胞)具有较小的认知光锥,这意味着它们可以感知和响应有限范围的因素,它们的目标通常集中于即时生存和局部条件。
  • 较大、较复杂的系统(如多细胞组织或生物体)具有较大的认知光锥,使它们能够感知和响应更广泛的因素,追求更复杂的目标,并在更长的时间尺度上进行规划。
  • 生物电信号传导在扩大细胞和组织的认知光锥方面起着至关重要的作用。 例如,间隙连接允许细胞共享信息并协调它们的行动,有效地增加了它们的集体感知和行动能力。
  • 癌症可以被视为认知光锥的收缩,其中细胞恢复到更自私的、单细胞水平的目标,失去与更大集体的联系。
  • 理解认知光锥有助于我们构建细胞和组织如何做出“决策”——不一定是意识决策,而是使它们在其感知和可操作空间内朝着目标前进的适应性选择。
  • 认知光锥意味着目标不是抽象的、高级的目标,而是在适合其大小和能力的“目标空间”内定义的。
  • 该术语与实际的“光”没有任何关系。

迈克尔·莱文 生物电 101 速成课程 第27课:认知光锥:细胞的“目标”和决策

在之前的课程中,我们讨论了细胞不仅仅是遵循遗传指令的被动成分。 它们是活跃的、动态的系统,会对来自其环境的信号(包括生物电信号)做出反应。 我们还介绍了集体智慧的概念——细胞群如何协同工作以实现单个细胞无法单独完成的结果。 现在,我们将进行另一次概念上的飞跃,探索一个框架,以理解细胞和组织如何被认为具有“目标”并做出“决策”,即使它们没有我们通常认为的大脑或意识。 这个框架基于“认知光锥”的概念。

“光锥”这个术语听起来可能令人生畏,但它实际上是一个相对简单的概念,借鉴自物理学。 在物理学中,光锥表示可以受特定事件影响或可以影响特定事件的时空区域。 想象一下闪光。 光向四面八方扩散,形成一个膨胀的球体。 光锥代表了该球体的边界——光可以到达内部的所有事物,而光无法到达外部的任何事物。 这个想法代表了任何信号的基本限制。 它不能传播到这个“屏障”之外。

现在,让我们把这个想法转化到生物学和认知的领域。 认知光锥代表生物系统的“影响范围”——它能感知的因素范围、它能代表的内部状态,以及它能采取的影响其环境的行动。 这是一种可视化系统“意识”和“能动性”范围的方式。 它与实际的光无关; 这只是隐喻的来源,所以不要想象从生物体发出的字面光束! 重要的问题将是该“主体”覆盖的空间尺度是什么?,以及该系统可以对哪些信息和“选择”选项做出反应?

可以这样想:

  • 单个细菌具有非常的认知光锥。 它可以感知其周围的营养物质或毒素的浓度等事物。 它的“目标”很简单:找到食物、避免危险、分裂。 它的行动仅限于向化学梯度方向或远离化学梯度方向游泳。 它可以直接感知到的只有眼前的“此时此地”。
  • 另一方面,多细胞组织具有较大的认知光锥。 组织内的细胞可以相互通信、共享信息并协调它们的行动。 它们可以在更大的区域内感知事物,代表更复杂的内部状态,并追求更复杂的目标,例如构建特定的器官形状或再生失去的肢体。 它跨越更大的时空块。
  • 像青蛙或人类这样的整个生物体具有更大的认知光锥。 它可以感知整个身体的事物,整合来自多种感官的信息,记住过去的事件,预测未来的事件,并计划复杂的行动来实现长期目标。

系统认知光锥的大小与其复杂性组织水平有关。 系统越复杂,其组件的集成度越高,其认知光锥往往越大。

那么,生物电如何融入这个图景呢? 生物电信号传导在扩大细胞和组织的认知光锥方面起着至关重要的作用。 这是如何做到的:

  • 间隙连接: 正如我们在第 6 课中学到的,间隙连接是连接相邻细胞细胞质的直接通道。 它们允许离子和小分子在细胞之间流动,有效地创建一个共享的电环境。 这意味着通过间隙连接连接的细胞可以共享信息协调它们的行为。 这扩大了它们的集体感知和行动能力——它们的认知光锥变得大于单个细胞光锥的总和。 他们可以做出更“了解”其细胞将做什么的决定; 与之更协调。
  • 电压梯度: 正如我们所讨论的,生物电梯度可以充当引导细胞行为的信号。 通过感知这些梯度,细胞可以获得有关其在组织内位置的信息,并相应地调整其行为。 这将它们的“意识”扩展到它们的直接环境之外。 因此,它们对身体状态的更全局信号做出反应。
  • 长距离信号传导: 生物电信号可以在组织内传播相对较长的距离,从而使细胞即使没有直接接触也能进行通信。 这进一步扩大了认知光锥,允许整个组织甚至整个生物体的协调行为。 这种通信不能完全描述为简单的化学信号传导

让我们考虑一些认知光锥如何在生物系统中发挥作用的具体例子:

  • 涡虫再生: 正如我们所见,涡虫可以从一个小碎片再生出整个身体。 这要求碎片中的细胞“知道”缺少了什么以及如何重建它。 碎片的认知光锥包含整个原始身体计划,即使它只是原始蠕虫的一小部分。 细胞不仅仅是被“推来推去”,有些模型没有充分考虑到以下关键点:组成“碎片”的部分根据其对其他、遥远的细胞和身体部位的了解而采取行动!
  • 青蛙肢体再生: 当青蛙失去肢体时,伤口部位的细胞需要协调它们的行动以再生失去的肢体。 这涉及感知损伤的程度,激活适当的生长程序,并引导新肢体结构的形成。 再生组织的认知光锥包含重建功能性肢体的“目标”。 并且这种再生和生长的信号并非以化学方式发出(这意味着非常局部、有限的细胞间效应)。 整个身体部位区域的整个电梯度可能会设定再生状态。
  • 癌症作为认知光锥的收缩: 癌症可以被视为集体控制的崩溃。 癌细胞失去与更大组织的联系,并恢复到更“自私”的单细胞水平的目标,如不受控制的增殖和迁移。 它们的认知光锥收缩,只关注它们的即时生存和生长,而牺牲了整个生物体。 细胞脱离,实际上失去了生物电通信,从组织合作和组织的一个层次下降到细胞规模的“目标”。
  • Anthrobots:新型的、迷人的工程“活机器人”。 一旦获得一些自由,这些就会自组织,表现为整体主体,做出令人惊讶的形态决策。 由此产生的集体是一些根本上新的东西——超越了细胞!

重要的是要强调,当我们谈论细胞或组织具有“目标”并做出“决定”时,我们并不是暗示它们像人类一样具有意识意图。 我们以更具功能性的意义使用这些术语,来描述从这些系统内的复杂相互作用中出现的适应性、目标导向的行为。 “目标空间”取决于特定的生物体。 部分及其在这些系统中的连接的行为表明了使用人类行为框架的价值。

了解认知光锥为思考生物系统如何在不同尺度上运行提供了一个强大的框架。 它有助于我们弥合分子水平(基因、蛋白质、离子通道)和宏观水平(组织形状、器官功能、生物体行为)之间的差距。 它还为癌症等疾病提供了新的视角,并为再生医学和合成生物工程开辟了令人兴奋的可能性。 通过学习“读取”和“写入”生物电代码,并通过了解认知光锥是如何形成和控制的,我们有可能获得对生物形式和功能的前所未有的控制。


迈克尔·莱文 生物电 101 速成课程 第27课:认知光锥:细胞的“目标”和决策 小测验

1. 什么是“认知光锥”(在生物学背景下)?

A) 可以受闪光影响的时空区域。
B) 生物系统可以感知到的因素范围及其可以采取的行动。
C) 生物体的视野。
D) 在大脑中发现的一种神经元。

2. 更小、更简单的生物系统往往具有:

A) 更大的认知光锥。
B) 更小的认知光锥。
C) 没有认知光锥。
D) 与较大系统相同大小的认知光锥。

3. 更大、更复杂的生物系统往往具有:

A) 更大的认知光锥。
B) 更小的认知光锥。
C) 没有认知光锥。
D) 与较小系统相同大小的认知光锥。

4. 生物电信号如何影响细胞或组织的认知光锥的大小?

A) 它没有影响。
B) 它缩小了认知光锥。
C) 它通过允许细胞通信和协调来扩展认知光锥。
D) 它只影响单细胞生物的认知光锥。

5. 哪种细胞结构通过直接的细胞间通信在扩大认知光锥方面起着至关重要的作用?

A) 线粒体
B) 核糖体
C) 间隙连接
D) 细胞核

6. 在本课的背景下,癌症可以被视为?

A) 认知光锥的扩大。
B) 认知光锥的收缩。
C) 认知光锥的完全丧失。
D) 一个不相关的现象。

7. 当我们谈论细胞有“目标”时,我们是否暗示它们有意识意图?

A) 是的,细胞是完全有意识的。
B) 不,我们是在功能意义上使用该术语来描述适应性的、目标导向的行为。
C) 只有一些细胞,如神经元,才有目标。
D) 细胞没有目标;它们只遵循遗传指令。

8. “认知光锥”概念有助于我们理解:

A) 细胞如何使用光进行通信。
B) 系统与环境交互能力的限制
C) 神经冲动的速度。
D) DNA 的结构。

9. 以下哪一项最能代表细菌细胞的认知光锥所包含的内容,并且最关注的是什么?

A) 到达远距离并协调复杂的肢体
B) 感知,以及这如何驱动增殖与否
C) 如何在其微环境中寻求即时目标
D) 全身再生的修复,并对其进行协调

10. 对或错:认知光锥的概念表明,较大的生物结构无法增加对更大区域范围的认识。

A) 对
B) 错

11. 对或错:生物电在任何情况下都不会参与增加细胞或结构影响更广泛的“光锥”的能力。

A) 对
B) 错

12. 对/错,成功再生的涡虫碎片必须仅使用局部细胞损伤范围内的细胞、分子:

A) 对
B) 错

13. 蚁群是否表现出“智慧”?

A) 是的,通过劳动分工和自组织
B) 是的,因为蚁后指挥行动
C) 不,根据定义,群体不表现出智能特征
D) 以上都不是

14. 相对于组织和功能齐全的动物,Anthrobots 代表了哪种结构?

A) 高于动物和细胞,表现出超人水平的认知处理能力
B) “低于”两者 – 完全没有功能
C) 低于两者。 它们的动态性或功能性不如器官。
D) 以上都不是。

15. 什么例子向我们展示了细胞智能的*证据*,这些*证据*不能仅仅用简单的遗传因素或分子扩散的化学来解释,这表明它涉及额外的复杂性来模拟它们的活动。

A) 即使逆转某些已知的、基于遗传的强烈变化,通过电信号操作逆转癌症
B) 涡虫“记住”并完全再生的能力,无论在哪里切割。
C) 控制身体形态的生物电“记忆”。
D) 以上都是。

16. 细胞如何根据它们感知的关于形态发生和/或发育变化的信号来实现对其组织的变化?

A) 只有大脑才能做到
B) 这是由于基因
C) 跨距离作用的电压梯度是“光锥”扩展以引导这种变化的一种可能方式
D) 未知; 它一定只涉及纯粹的化学因素,例如分子漂移

17. 当操纵生物电并影响形态时,什么水平最能描述其能力的作用?

A) 它影响基因
B) 它影响形状
C) A 和 B
D) 以上都不是

18. 为什么增加通过间隙连接的通信可能会*增加*细胞系统的认知能力?

A) 间隙连接只能共享非常简单的化学梯度。
B) 它增加了细胞的“共享”或协调,从而提高了通信的数量 – 更多的“细胞,更好的行为”。
C) 它们只直接连接相邻的细胞。
D) 以上都是。

19. 为什么你可以描述细胞做出“决定”,尽管它们是非神经元的?

A) 它们可能会根据感知的区域信号做出不同的反应; 这种差异反过来会改变细胞的动作/运动
B) “决定”应该只指黑猩猩等有大脑的动物,而不是形态发生之类的事情
C) 你不应该
D) 所有细胞都完全同步地运作,由纯粹的遗传或表观遗传的静态状态决定; 从来没有选择或适应性运动

20. 在之前的课程(和涵盖的研究)中描述了哪种生物组织也显示出具有新兴认知的基于电压的决策,类似于生物电,它*既不是*动物/青蛙细胞也不是人类细胞?

A) 微生物,在群落/生物膜中
B) 基因调控网络
C) 涡虫(一种扁虫)
D) 以上都是


迈克尔·莱文 生物电 101 速成课程 第27课:认知光锥:细胞的“目标”和决策 答案表

1. B

2. B

3. A

4. C

5. C

6. B

7. B

8. B

9. C

10. B

11. B

12. B

13. A

14. D

15. D

16. C

17. C

18. B

19. A

20. D