Michael Levin Bioelectricity 101 Crash Course Lesson 26: Collective Intelligence: How Cells Work Together Electrically Summary
- “Collective intelligence” describes the ability of a group of individuals (cells, animals, etc.) to solve problems and achieve goals that would be impossible for any single individual.
- This is not simply about complexity arising from simple interactions; it’s about adaptive, goal-directed behavior at the group level.
- Cells within tissues can exhibit collective intelligence, communicating via bioelectric signals (and other mechanisms) to coordinate their actions.
- Key examples of cellular collective intelligence include embryonic development, regeneration, wound healing, and (when it goes wrong) cancer.
- Gap junctions play a crucial role in cellular collective intelligence, allowing direct electrical communication between cells. They help synchronize their activities.
- Bioelectric gradients and patterns, not just individual cell voltages, are important for encoding information and guiding collective behavior.
- The “cognitive light cone” concept helps to explain how the scale of a cell group affects its ability to “think” about larger-scale problems. Bigger connected networks enable thinking on a bigger and longer scale.
- Collective intelligence in cell groups is not limited to animals; it’s also observed in plants, bacteria, and even artificial systems.
- Understanding cellular collective intelligence has implications for medicine (regenerative medicine, cancer therapy) and synthetic bioengineering.
- It changes our understanding of morphogenesis and of information processing/memory in biological contexts, with all the related ethical and medical implications that brings.
Michael Levin Bioelectricity 101 Crash Course Lesson 26: Collective Intelligence: How Cells Work Together Electrically
We’ve spent many lessons exploring the individual pieces of the bioelectric puzzle: ion channels, membrane potential, voltage gradients, and how these things influence cell behavior. But living organisms aren’t just collections of independent cells. They are integrated systems, where cells constantly communicate and cooperate to build complex structures, maintain homeostasis, and respond to their environment. This brings us to a truly profound concept: collective intelligence.
When most people hear the term “collective intelligence,” they probably think of things like ant colonies, beehives, flocks of birds, or schools of fish. These groups can perform amazing feats – building complex nests, finding food efficiently, avoiding predators – that would be impossible for any single individual. But collective intelligence isn’t limited to animal behavior. It’s a much broader principle, and, crucially, it applies to the cells within our own bodies.
What do we mean by “collective intelligence” in this context? It’s important to be precise. It’s not just about emergent complexity – the idea that complex patterns can arise from simple interactions between many individuals. That’s certainly true, and it’s an important concept in biology. But collective intelligence goes further. It implies:
- Goal-directedness: The group, as a whole, is working towards specific goals, even if the individual components don’t “know” about those goals.
- Problem-solving: The group can adapt its behavior to overcome obstacles and achieve those goals in novel or changing circumstances.
- Information processing: The group can sense, store, and process information, and use that information to make decisions.
- Robustness An ability to respond and dynamically keep goal states, such as correct tissue structure and proportions.
Think about an ant colony. Individual ants are relatively simple creatures. They follow simple rules, responding to local cues (like pheromone trails). But the colony as a whole can achieve incredible things – building complex nests with ventilation systems, organizing foraging expeditions, defending against intruders. The colony, in a sense, “thinks” and “acts” as a single unit, even though there’s no “leader” ant telling the others what to do.
Now, consider the cells within a developing embryo. Each cell has its own genetic program, its own set of receptors, and its own internal machinery. But these cells aren’t just acting independently. They’re constantly communicating with each other, exchanging signals, and coordinating their actions to build the incredibly complex structure of the body. This is a form of collective intelligence. The cells, as a group, are “solving the problem” of building an organism, a problem that no individual cell could possibly solve on its own.
Bioelectricity plays a crucial role in this cellular collective intelligence. As we’ve learned, cells communicate using electrical signals – changes in membrane potential, ion flows, and voltage gradients. These signals are not just random noise; they carry information that coordinates cell behavior.
- Gap Junctions: The Key to Electrical Connection: A critical component of this communication system is the gap junction. Gap junctions are specialized channels that directly connect the cytoplasm of adjacent cells. They allow ions (and therefore electrical signals) to pass directly from one cell to another. Think of them like tiny tunnels connecting neighboring houses, allowing the residents to share information and resources.
Gap junctions are essential for many examples of cellular collective intelligence. They allow cells to:
- Synchronize their activity: Cells can share electrical signals, causing them to depolarize or hyperpolarize together.
- Form electrical networks: Gap junctions can create large, interconnected networks of cells that behave as a single unit.
- Share small molecules: In addition to ions, gap junctions can also allow small signaling molecules to pass between cells, further coordinating their behavior.
- Bioelectric Gradients: Patterns of Information: The bioelectric communication between cells isn’t just about individual cell voltages. It’s about patterns of voltage across tissues. These patterns, or bioelectric gradients, act as a kind of “topographical map” that guides cell behavior. Think of a landscape where the hills and valleys represent different voltages. Cells can “sense” this landscape and respond accordingly, moving, dividing, or differentiating in specific ways.
These bioelectric gradients are not static. They change over time, particularly during development and regeneration. These changes in the electrical landscape can drive large-scale changes in tissue shape and structure. They are the readout and instruction.
- The “Cognitive Light Cone”: Scale Matters: A helpful concept for understanding cellular collective intelligence is the “cognitive light cone,” which we touched on in previous lessons. The idea is that the size and complexity of a connected network of cells (or any other agents) influences the kinds of problems it can “think” about.
A single cell has a very limited cognitive light cone. It can sense and respond to its immediate environment – things like the concentration of nutrients, the presence of toxins, or direct contact with other cells. But it can’t “think” about large-scale anatomical structures, like the shape of an organ or the overall body plan. Its capacity to deal with inputs over larger scales is limited by a bandwidth problem — if cells can only sense one area nearby at a time, or if there are only so many messages they can communicate.
However, a group of cells, connected by gap junctions and communicating electrically, can have a much larger cognitive light cone. They can “sense” information from a wider area, integrate that information, and make decisions about larger-scale patterns and structures. It’s like the difference between a single ant and an entire ant colony. The single ant can only react to its immediate surroundings. The colony, as a whole, can “think” about much bigger problems, like where to find food or how to build a nest.
- The more intelligent (adaptively goal-directed) the parts of the larger unit, the more ability to deal with difficult problems! This contrasts greatly to engineered systems.
Let’s look at some specific examples of cellular collective intelligence in action:
- Embryonic Development: The formation of an embryo from a single fertilized egg is a stunning example of collective intelligence. Cells divide, migrate, differentiate, and self-organize into complex tissues and organs, all coordinated by a complex interplay of chemical and bioelectric signals. Bioelectric gradients, established very early in development, guide the formation of the body axes (head-tail, left-right, back-front) and the positioning of organs. This large-scale control flows down to local cell levels to implement development.
- Regeneration: Animals like planarian flatworms and salamanders can regenerate lost body parts. This is another striking example of collective intelligence. The remaining cells in the body “know” what’s missing and how to rebuild it, coordinating their actions to restore the original structure. Bioelectric signals are crucial for initiating and guiding this process, carrying information about the “target morphology” – the desired shape of the regenerated structure.
- Wound Healing: When you cut yourself, the cells around the wound work together to repair the damage. They migrate to close the wound, divide to replace lost cells, and secrete proteins to rebuild the tissue. This process is guided, in part, by electric fields that are generated at the wound site.
- Cancer: Cancer can be viewed as a breakdown of collective intelligence. Cancer cells lose their normal communication with their neighbors and start behaving in a selfish, uncontrolled way. They stop responding to the normal bioelectric signals that regulate growth and differentiation, and they start invading other tissues. Bioelectricity changes here are often the result of other signals/information being misinterpreted and changed in the cells; the cancerous cell is then read-out as different.
Importantly, collective intelligence in cells isn’t limited to animals. Plant cells also communicate electrically and exhibit coordinated behaviors, although the mechanisms are somewhat different (they use different types of ion channels and don’t have gap junctions in the same way animals do). Bacteria, too, can form biofilms – complex communities of cells that communicate and cooperate, often using electrical signals.
The understanding of cellular collective intelligence is still in its early stages, but it has profound implications for:
- Medicine: If we can learn to “speak the language” of cellular communication, we could potentially:
- Stimulate regeneration in humans (e.g., regrowing limbs or repairing spinal cord injuries).
- Develop new cancer therapies that target the aberrant bioelectric signals in tumors.
- Correct birth defects by restoring normal bioelectric patterns during development.
- Synthetic Bioengineering: We could design artificial systems that mimic the collective intelligence of cells, creating new types of materials, devices, and even “living machines.”
In short, the study of collective intelligence in cell groups opens up a new way of thinking about biology, shifting the focus from individual cells to the coordinated behavior of entire tissues and organs. It reveals that “intelligence” – the ability to solve problems and achieve goals – is not limited to brains and nervous systems, but is a fundamental property of living matter, expressed in diverse ways across many levels of organization.
Michael Levin Bioelectricity 101 Crash Course Lesson 26: Collective Intelligence: How Cells Work Together Electrically Quiz
1. What is “collective intelligence” in the context of this lesson?
A) The intelligence of a single, highly evolved cell.
B) The ability of a group of cells to solve problems and achieve goals that individual cells cannot.
C) The sum of the intelligence of all the cells in a tissue.
D) A type of artificial intelligence.
2. Which of the following is NOT a characteristic of collective intelligence?
A) Goal-directedness
B) Problem-solving
C) Simple, predictable behavior based solely on individual cell actions.
D) Information processing
3. What structures are crucial for direct electrical communication between animal cells?
A) Ion channels
B) Gap junctions
C) Synapses
D) Desmosomes
4. What are bioelectric gradients?
A) Rapid spikes of electrical activity in neurons.
B) Patterns of voltage differences across tissues.
C) Chemical signals that diffuse through tissues.
D) The physical structure of DNA.
5. What is the “cognitive light cone”?
A) The area of the brain responsible for vision.
B) The range of problems that a cell or group of cells can “think” about.
C) The speed at which light travels through a cell.
D) A type of microscope used to study bioelectricity.
6. True or False: a smaller “cognitive light cone” will make more collective or large-scale bioelectric outcomes easier for the group to attain.
A) True
B) False
7. Which of the following is NOT an example of cellular collective intelligence?
A) Embryonic development
B) A single neuron firing an action potential
C) Planarian regeneration
D) Wound healing
8. In the context of collective behavior, how is Cancer best understood?
A) An example of collective intelligence functioning correctly
B) A breakdown of collective intelligence, with cells acting selfishly.
C) A process unrelated to cell communication
D) A normal part of wound response and regeneration.
9. Can plant cells exhibit collective intelligence?
A) No, only animal cells can.
B) Yes, but they use completely different mechanisms than animal cells.
C) Yes, although they lack gap junctions, they use other forms of communication.
D) Plants are single-celled organisms, so the concept doesn’t apply.
10. True/False: understanding cells as collective and behaving similar to, for example, a bee hive, might open the door for new applications of methods from fields normally applied to things like hives, on tissues?
A) True
B) False
11. Which field might benefit the *most* from a deeper understanding of cellular collective intelligence?
A) Astronomy
B) Geology
C) Regenerative medicine
D) Paleontology
12. How do cells communicate their state of intelligence?
A) Gap Junctions
B) Neurotransmitters
C) Ion Channel expression levels and voltage patterns.
D) All of the Above.
13. Why is it that when embryos exhibit LR patterning disruption from a Vmem changing treatment, some kinds of early disruptions “correct” the later read-outs and final products, compared to other treatments which *don’t*?
A) We Know Why.
B) No Such correction phenomenon happens.
C) Some systems act in more compensatory ways.
D) We don’t yet know, precisely, all of it, and there may be multiple parallel pathways as well.
14. The “goal” of the cells is said to exist at what scales, or locations?
A) The immediate, and direct area in a cell’s environment.
B) Very very distant scales and “global” areas, like the eventual organ plan.
C) An error function toward homeostasis.
D) B and C.
15. Is Cancer one thing, caused by only one influence?
A) Yes
B) No
16. When embryos exhibit early, *very* early perturbations, such as targeting α-tubulin and microtubule organization at stages prior to significant gene regulation, they
A) Change gene expression
B) Potentially repair/recover/work-around errors before final patterning.
C) Exhibit behavioral changes on the cellular level
D) All of The Above
17. What is an important aspect of studying a “collective intelligence”?
A) Looking only at a reductionist/small level
B) Understanding memory, even without neural cells.
C) Recognizing large-scale goal navigation toward endpoints.
D) B and C
18. If we had *complete and total* and 100% reductionist accounts for cellular regeneration, then this concept would go away.
A) True
B) False
19. If cells of planeria that, at one time and position are going to develop into a tail, suddenly are altered (e.g. they get cut and/or put onto another body part), they may very well instead form the anterior body part. This implies
A) that “cell fate” at the very small level cannot fully, independently specify morphogenetic outcomes
B) that some external signals are at play to cause “group decsision”
C) memory that tissues keep over time.
D) All of The Above
20. One very simple definition of a system showing *collective intellgience* includes that…
A) A large structure.
B) Goal seeking activity over extended periods of time, and over changing landscapes of the “problem area” of a tissue’s geometry.
C) A gene circuit only.
D) Neural connections.
Michael Levin Bioelectricity 101 Crash Course Lesson 26: Collective Intelligence: How Cells Work Together Electrically Answer Sheet
1. B
2. C
3. B
4. B
5. B
6. B
7. B
8. B
9. C
10. A
11. C
12. D
13. D
14. D
15. B
16. D
17. D
18. B
19. D
20. B
迈克尔·莱文 生物电 101 速成课程 第26课:集体智慧:细胞如何通过电进行协作 摘要
- “集体智慧”描述了一群个体(细胞、动物等)解决问题和实现目标的能力,而这些问题和目标是任何单个个体无法实现的。
- 这不仅仅是简单交互产生的复杂性;它是群体层面的适应性、目标导向行为。
- 组织内的细胞可以表现出集体智慧,通过生物电信号(和其他机制)进行通信以协调它们的行动。
- 细胞集体智慧的关键例子包括胚胎发育、再生、伤口愈合以及(当它出错时)癌症。
- 间隙连接在细胞集体智慧中起着至关重要的作用,允许细胞之间进行直接的电通信。它们有助于同步它们的活动。
- 生物电梯度和模式,而不仅仅是单个细胞的电压,对于编码信息和指导集体行为非常重要。
- “认知光锥”概念有助于解释细胞群的规模如何影响其“思考”更大规模问题的能力。更大的连接网络能够实现更大规模和更长时间的思考。
- 细胞群中的集体智慧不仅限于动物;在植物、细菌甚至人工系统中也观察到。
- 了解细胞集体智慧对医学(再生医学、癌症治疗)和合成生物工程具有重要意义。
- 它改变了我们对形态发生和生物环境中信息处理/记忆的理解,以及随之而来的所有伦理和医学意义。
迈克尔·莱文 生物电 101 速成课程 第26课:集体智慧:细胞如何通过电进行协作
在本课程中,我们已经探索了生物电难题的各个组成部分:离子通道、膜电位、电压梯度,以及这些东西如何影响细胞行为。 但是,活的生物体不仅仅是独立细胞的集合。 它们是集成系统,细胞不断地相互交流和合作,以构建复杂的结构、维持体内平衡并响应其环境。 这将我们带入一个真正深刻的概念:集体智慧。
当大多数人听到“集体智慧”这个词时,他们可能会想到蚁群、蜂巢、鸟群或鱼群。 这些群体可以完成惊人的壮举——建造复杂的巢穴、有效地寻找食物、躲避捕食者——这些都是任何单个个体无法完成的。 但是,集体智慧不仅限于动物行为。 这是一个更广泛的原则,而且至关重要的是,它适用于我们自己体内的细胞。
在这种情况下,我们所说的“集体智慧”是什么意思? 准确地说很重要。 这不仅仅是涌现的复杂性——许多个体之间的简单交互可以产生复杂的模式。 这当然是正确的,也是生物学中的一个重要概念。 但是,集体智慧更进一步。 这意味着:
- 目标导向: 作为一个整体,该群体正在朝着特定的目标努力,即使各个组成部分并不知道这些目标。
- 问题解决: 该群体可以调整其行为,以克服障碍并在新的或不断变化的环境中实现这些目标。
- 信息处理: 该群体可以感知、存储和处理信息,并利用这些信息做出决策。
- 稳健性 应对和动态保持目标状态的能力,例如正确的组织结构和比例。
想想一个蚁群。 单个蚂蚁是相对简单的生物。 它们遵循简单的规则,对局部线索(如信息素轨迹)做出反应。 但是蚁群作为一个整体可以完成令人难以置信的事情——建造带有通风系统的复杂巢穴,组织觅食远征,抵御入侵者。 从某种意义上说,蚁群作为一个整体在“思考”和“行动”,即使没有“领导者”蚂蚁告诉其他蚂蚁该做什么。
现在,考虑一下发育中的胚胎内的细胞。 每个细胞都有自己的遗传程序、自己的一组受体和自己的内部机制。 但是这些细胞不仅仅是独立行动的。 它们不断地相互交流、交换信号并协调它们的行动,以构建极其复杂的身体结构。 这是一种集体智慧的形式。 作为一个群体,细胞正在“解决”构建生物体的问题,这个问题是任何单个细胞都无法单独解决的。
生物电在这种细胞集体智慧中起着至关重要的作用。 正如我们所了解的,细胞使用电信号进行通信——膜电位的变化、离子流和电压梯度。 这些信号不仅仅是随机噪声; 它们携带协调细胞行为的信息。
-
间隙连接:电连接的关键: 这种通信系统的一个关键组成部分是间隙连接。 间隙连接是直接连接相邻细胞细胞质的特殊通道。 它们允许离子(以及因此产生的电信号)直接从一个细胞传递到另一个细胞。 可以把它们想象成连接邻近房屋的微小隧道,允许居民共享信息和资源。
间隙连接对于细胞集体智慧的许多例子至关重要。 它们允许细胞:
- 同步它们的活动: 细胞可以共享电信号,使它们一起去极化或超极化。
- 形成电网络: 间隙连接可以创建大型的、相互连接的细胞网络,这些网络作为一个整体发挥作用。
- 共享小分子: 除了离子,间隙连接还可以允许小信号分子在细胞之间传递,从而进一步协调它们的行为。
-
生物电梯度:信息的模式: 细胞之间的生物电通信不仅仅是单个细胞的电压。 它还涉及跨组织的电压模式。 这些模式,或称生物电梯度,就像一种指导细胞行为的“地形图”。 可以想象一个景观,其中的山丘和山谷代表不同的电压。 细胞可以“感知”这种景观并做出相应的反应,以特定的方式移动、分裂或分化。
这些生物电梯度不是静态的。 它们会随着时间的推移而变化,特别是在发育和再生过程中。 电景观的这些变化可以驱动组织形状和结构的大规模变化。 它们是读出和指令。
-
“认知光锥”:规模很重要: 理解细胞集体智慧的一个有用概念是“认知光锥”,我们在之前的课程中提到过。 这个想法是,连接的细胞(或任何其他主体)网络的规模和复杂性会影响它可以“思考”的问题类型。
单个细胞的认知光锥非常有限。 它可以感知并响应其直接环境——诸如营养物质浓度、毒素的存在或与其他细胞的直接接触之类的事情。 但它不能“思考”大规模的解剖结构,如器官的形状或整体身体计划。 它处理更大规模输入的能力受到带宽问题的限制——如果细胞一次只能感知附近的一个区域,或者它们可以交流的信息数量有限。
然而,由间隙连接连接并通过电进行通信的一组细胞可以拥有更大的认知光锥。 他们可以“感知”来自更广阔区域的信息,整合这些信息,并对更大规模的模式和结构做出决策。 这就像单个蚂蚁和整个蚁群之间的区别。 单个蚂蚁只能对其周围环境做出反应。 作为一个整体,蚁群可以“思考”更大的问题,比如在哪里找到食物或如何建造巢穴。
- 个体的越聪明, 上层整体的单元, 应对挑战的能力就越大! 这跟工程师系统形成强烈反差。
让我们看看细胞集体智慧发挥作用的一些具体例子:
- 胚胎发育: 从单个受精卵形成胚胎是集体智慧的一个惊人例子。 细胞分裂、迁移、分化和自组织成复杂的组织和器官,所有这些都由化学和生物电信号的复杂相互作用来协调。 在发育早期建立的生物电梯度指导身体轴(头尾、左右、背腹)的形成和器官的定位。 这种大规模控制向下流向局部细胞水平以实现发育。
- 再生: 像涡虫和蝾螈这样的动物可以再生失去的身体部位。 这是集体智慧的另一个显著例子。 体内剩余的细胞“知道”缺少什么以及如何重建它,协调它们的行动以恢复原始结构。 生物电信号对于启动和指导这一过程至关重要,它携带有关“目标形态”的信息——再生结构的所需形状。
- 伤口愈合: 当你割伤自己时,伤口周围的细胞会共同修复损伤。 它们迁移以闭合伤口,分裂以替换丢失的细胞,并分泌蛋白质以重建组织。 这个过程部分由伤口部位产生的电场引导。
- 癌症: 癌症可以被视为集体智慧的崩溃。 癌细胞失去了与邻居的正常交流,并开始以自私、不受控制的方式行事。 它们停止响应调节生长和分化的正常生物电信号,并开始侵入其他组织。 此处的生物电变化通常是细胞中其他信号/信息被错误解释和改变的结果; 然后癌细胞被读出为不同的。
重要的是,细胞中的集体智慧不仅限于动物。 植物细胞也进行电交流并表现出协调行为,尽管机制有所不同(它们使用不同类型的离子通道,并且没有动物那样的间隙连接)。 细菌也可以形成生物膜——复杂的细胞群落,它们相互交流和合作,通常使用电信号。
对细胞集体智慧的理解仍处于早期阶段,但它对以下方面具有深远的影响:
- 医学: 如果我们能学会“说”细胞交流的语言,我们就有可能:
- 刺激人类的再生(例如,重新长出四肢或修复脊髓损伤)。
- 开发针对肿瘤中异常生物电信号的新癌症疗法。
- 通过在发育过程中恢复正常的生物电模式来纠正出生缺陷。
- 合成生物工程: 我们可以设计模仿细胞集体智慧的人工系统,创造新型材料、设备甚至“活机器”。
简而言之,细胞群中集体智慧的研究为思考生物学开辟了一种新的方式,将重点从单个细胞转移到整个组织和器官的协调行为。 它揭示了“智慧”——解决问题和实现目标的能力——不仅限于大脑和神经系统,而是生命物质的一个基本属性,在许多组织层次上以多种方式表达。
迈克尔·莱文 生物电 101 速成课程 第26课:集体智慧:细胞如何通过电进行协作 小测验
1. 在本课的语境中,“集体智慧”是什么?
A) 单个高度进化的细胞的智慧。
B) 一组细胞解决问题和实现目标的能力,而这些问题和目标是单个细胞无法实现的。
C) 组织中所有细胞的智慧总和。
D) 一种人工智能。
2. 以下哪一项不是集体智慧的特征?
A) 目标导向性
B) 问题解决
C) 仅基于单个细胞行为的简单、可预测的行为。
D) 信息处理
3. 哪些结构对于动物细胞之间的直接电通信至关重要?
A) 离子通道
B) 间隙连接
C) 突触
D) 桥粒
4. 什么是生物电梯度?
A) 神经元中电活动的快速尖峰。
B) 跨组织的电压差异模式。
C) 在组织中扩散的化学信号。
D) DNA 的物理结构。
5. 什么是“认知光锥”?
A) 大脑中负责视觉的区域。
B) 细胞或细胞群可以“思考”的问题范围。
C) 光穿过细胞的速度。
D) 一种用于研究生物电的显微镜。
6. 对或错:较小的“认知光锥”会使群体更容易获得更多的集体或大规模的生物电结果。
A) 对
B) 错
7. 以下哪一项不是细胞集体智慧的例子?
A) 胚胎发育
B) 单个神经元发放动作电位
C) 涡虫再生
D) 伤口愈合
8. 在集体行为的背景下,如何最好地理解癌症?
A) 集体智慧正常运作的一个例子
B) 集体智慧的崩溃,细胞表现出自私的行为。
C) 与细胞交流无关的过程
D) 伤口反应和再生的正常部分。
9. 植物细胞能表现出集体智慧吗?
A) 不,只有动物细胞可以。
B) 可以,但它们使用与动物细胞完全不同的机制。
C) 可以,尽管它们缺乏间隙连接,但它们使用其他形式的通信。
D) 植物是单细胞生物,因此该概念不适用。
10. 对/错:将细胞理解为集体并表现得类似于(例如)蜂巢,可能会为应用通常用于蜂巢等领域的场方法打开大门?
A) 对
B) 错
11. 哪个领域可能从更深入地了解细胞集体智慧中获益最多?
A) 天文学
B) 地质学
C) 再生医学
D) 古生物学
12. 细胞如何交流它们的智慧状态?
A) 间隙连接
B) 神经递质
C) 离子通道表达水平和电压模式。
D) 以上都是。
13. 为什么当胚胎表现出 Vmem 改变处理引起的左右模式破坏时,某些类型的早期破坏会“纠正”后来的读数和最终产物,而其他处理则不会?
A) 我们知道为什么。
B) 没有发生这种校正现象。
C) 一些系统以更多的补偿方式起作用。
D) 我们还不知道确切的原因,它可能涉及多个平行通路。
14. 据说细胞的“目标”存在于什么尺度或位置?
A) 细胞环境中的直接区域。
B) 非常遥远的尺度和“全局”区域,如最终的器官计划。
C) 趋向体内平衡的误差函数。
D) B 和 C。
15. 癌症是由单一影响引起的一件事吗?
A) 是
B) 否
16. 当胚胎表现出早期、非常早期的扰动,例如在重要基因调控之前的阶段靶向 α-微管蛋白和微管组织时,它们
A) 改变基因表达
B) 可能会修复/恢复/解决最终模式之前的错误。
C) 表现出细胞水平的行为变化
D) 以上都是
17. 研究“集体智慧”的一个重要方面是什么?
A) 仅关注还原论/小层面
B) 理解记忆,即使没有神经细胞。
C) 识别朝着终点的大规模目标导航。
D) B 和 C
18. 如果我们对细胞再生有完整、完全和 100% 的还原论解释,那么这个概念就会消失。
A) 对
B) 错
19. 如果涡虫的细胞在某一时间和位置将发育成尾巴,突然发生改变(例如,它们被切割和/或放置在另一个身体部位),它们很可能反而形成前部。这意味着
A) 非常小的水平上的“细胞命运”不能完全独立地指定形态发生结果
B) 一些外部信号在起作用以导致“群体决策”
C) 组织随着时间的推移而保持的记忆。
D) 以上都是
20. 展示*集体智慧*的系统的一个非常简单的定义包括…
A) 一个大型结构。
B) 在较长时间内,以及在组织几何形状的“问题区域”不断变化的景观中,寻求目标的活动。
C) 仅基因电路。
D) 神经连接。
迈克尔·莱文 生物电 101 速成课程 第26课:集体智慧:细胞如何通过电进行协作 答案表
1. B
2. C
3. B
4. B
5. B
6. B
7. B
8. B
9. C
10. A
11. C
12. D
13. D
14. D
15. B
16. D
17. D
18. B
19. D
20. B