Michael Levin Bioelectricity 101 Crash Course Lesson 18: Melanoma and Bioelectricity: Controlling Cancer Cell Behavior

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 18: Melanoma and Bioelectricity: Controlling Cancer Cell Behavior Summary

  • Melanoma is a highly aggressive skin cancer that originates from pigment-producing cells called melanocytes.
  • Levin’s research uses Xenopus (frog) embryos as a model system to study melanoma because melanocytes are easily visible and their behavior can be tracked.
  • Depolarization of the membrane potential (Vmem) of certain “instructor cells” in the Xenopus embryo can induce a metastatic melanoma phenotype in otherwise normal melanocytes. This happens without genetic mutations or carcinogen exposure.
  • The bioelectric change triggers a signaling cascade involving the neurotransmitter serotonin, which activates pathways leading to increased proliferation, migration, and invasiveness of melanocytes.
  • Conversely, maintaining a hyperpolarized Vmem, or interfering with the serotonin signaling pathway, can prevent or reverse the melanoma phenotype, even in the presence of factors that would normally promote it.
  • This model system provides strong evidence for a non-genetic origin of some cancers and highlights the therapeutic potential of targeting bioelectric signals.
  • Instructor cells do not necessarily become cancer. The instructors induce neighboring cells, that have had zero interference, to change into melanoma.

Michael Levin Bioelectricity 101 Crash Course Lesson 18: Melanoma and Bioelectricity: Controlling Cancer Cell Behavior

In the previous lesson, we established that cancer is fundamentally a disease of disrupted cellular communication, often involving a breakdown in bioelectric signaling. Now, let’s look at a specific, powerful example of this principle in action: the relationship between bioelectricity and melanoma, a particularly aggressive and dangerous form of skin cancer. Michael Levin’s research provides striking evidence for how bioelectric manipulation can both induce and suppress melanoma, offering hope for novel therapeutic approaches.

Melanoma originates from melanocytes, cells that produce melanin, the pigment that gives skin, hair, and eyes their color. Melanocytes are normally found in the basal layer of the epidermis (the outer layer of skin) and have a characteristic, branched shape. In melanoma, these cells become cancerous, dividing uncontrollably, invading surrounding tissues, and often spreading (metastasizing) to other parts of the body.

To study the complex interplay between bioelectricity and melanoma, Levin’s lab uses an elegant model system: embryos of the African clawed frog, Xenopus laevis. Why frogs? Several reasons make them ideal:

  1. Visible Melanocytes: Xenopus embryos have large, easily visible melanocytes, making it straightforward to track their behavior and observe changes in their shape, number, and location.
  2. Rapid Development: Xenopus embryos develop externally and very quickly, allowing researchers to observe the progression of melanoma in a matter of days.
  3. Manipulable Bioelectricity: The bioelectric properties of Xenopus cells can be readily manipulated using various techniques, including drugs that target ion channels and the injection of mRNA encoding specific ion channels.

The key experiment in Levin’s work involves manipulating the membrane potential (Vmem) of a specific set of cells, called “instructor cells”. Importantly, these are not the melanocytes themselves. Instead, they are cells located elsewhere in the embryo that normally suppress melanoma-like behavior in melanocytes. They are effectively “instructing” cells, and other tissue, through their resting voltage.

Here’s the groundbreaking finding: When the instructor cells are depolarized (made less negative inside), otherwise normal melanocytes in the embryo transform into a metastatic melanoma phenotype. They start to:

  • Proliferate uncontrollably: The number of melanocytes increases dramatically.
  • Change shape: They lose their normal, branched morphology and become more elongated and “stringy.”
  • Migrate and invade: They move to abnormal locations in the embryo, including invading blood vessels and the neural tube (the precursor to the brain and spinal cord).

This transformation happens without any genetic mutations in the melanocytes themselves, and without exposure to any carcinogens. It’s purely a consequence of the altered bioelectric state of the instructor cells. This is crucial: it demonstrates that a cancer phenotype can be induced solely by manipulating bioelectricity.

How does this work? The depolarization of the instructor cells triggers a signaling cascade that ultimately affects the melanocytes. Here’s the sequence:

  1. Depolarization of Instructor Cells: The change in Vmem is typically achieved using drugs that open or block specific ion channels, such as the chloride channel opener ivermectin.
  2. Altered Serotonin Signaling: The depolarized instructor cells release altered levels of the neurotransmitter serotonin. Serotonin is typically thought of as a brain chemical involved in mood regulation, but it also plays important roles in development and cell signaling outside the nervous system.
  3. Activation of Melanocyte Pathways: The altered serotonin levels bind to receptors on the melanocytes, activating intracellular signaling pathways that promote proliferation, migration, and invasion. These pathways include genes like SLUG, a known marker of metastasis.

The beauty of this model is that it allows researchers to dissect the precise mechanisms linking bioelectricity to cancer. They can identify the specific ion channels involved, the neurotransmitters that act as messengers, and the downstream genes that drive the melanoma phenotype.

Even more remarkably, the reverse is also true. If the instructor cells are hyperpolarized (made more negative inside), or if the serotonin signaling pathway is blocked, the melanoma phenotype can be prevented or even reversed. This holds even if there is another trigger present to signal and activate oncogenes. This provides powerful evidence for the therapeutic potential of targeting bioelectric signals.

Imagine a scenario where a person has a genetic predisposition to melanoma, or has been exposed to a carcinogen. Normally, this might lead to the development of cancer. But what if we could intervene bioelectrically, maintaining the correct Vmem in the relevant cells, or blocking the downstream signaling pathways? We might be able to prevent the cancer from developing in the first place, or even reverse its progression. This represents the great control offered by manipulating tissue resting potentials.

This Xenopus melanoma model highlights several key principles:

  • Non-Cell-Autonomous Effects: The bioelectric state of one group of cells (the instructor cells) can profoundly influence the behavior of another group of cells (the melanocytes). This emphasizes the importance of the cellular microenvironment in determining cell fate.
  • Non-Genetic Origins of Cancer: Cancer can be induced without genetic mutations, highlighting the crucial role of physiological factors like bioelectricity.
  • Therapeutic Potential of Bioelectric Modulation: Manipulating bioelectric signals offers a promising new approach to cancer prevention and treatment, aiming to reprogram cancer cells rather than just killing them.
  • Stochasticity: While the experiment above outlines consistent effects when these pathways are correctly changed, often times, inducing these melanoma transformations (and their cures) are stochastically spread.

The work on melanoma and bioelectricity is not just about this specific type of cancer. It’s a proof-of-concept, demonstrating the power of bioelectric signaling to control cell behavior and the potential of targeting this system for therapeutic benefit. It opens up a new frontier in cancer research, moving beyond the purely genetic view to a more holistic understanding that incorporates the crucial role of bioelectrical communication.


Michael Levin Bioelectricity 101 Crash Course Lesson 18: Melanoma and Bioelectricity: Controlling Cancer Cell Behavior Quiz

1. Melanoma originates from what type of cells?

A) Neurons
B) Melanocytes
C) Epithelial cells
D) Fibroblasts

2. Why are Xenopus embryos used as a model system to study melanoma?

A) They have easily visible melanocytes.
B) They develop rapidly.
C) Their bioelectric properties can be easily manipulated.
D) All of the above.

3. In Levin’s experiments, what happens when instructor cells are depolarized?

A) Melanocytes become hyperpolarized.
B) Melanocytes transform into a metastatic melanoma phenotype.
C) Melanocytes die.
D) Melanocytes become more differentiated.

4. The transformation of melanocytes into a melanoma phenotype in the Xenopus model occurs:

A) Only in the presence of genetic mutations.
B) Only after exposure to carcinogens.
C) Even in the absence of genetic mutations or carcinogen exposure.
D) Only in adult frogs.

5. What neurotransmitter is involved in the signaling cascade triggered by depolarization of instructor cells?

A) Dopamine
B) Serotonin
C) Acetylcholine
D) Glutamate

6. Which of the following is NOT a characteristic of the melanoma phenotype induced in the Xenopus model?

A) Increased proliferation
B) Change in cell shape
C) Decreased migration and invasion
D) Spread to abnormal locations

7. Hyperpolarizing instructor cells, or blocking serotonin signaling, can have what effect on the melanoma phenotype?

A) It can induce the melanoma phenotype.
B) It can prevent or reverse the melanoma phenotype.
C) It has no effect.
D) It only affects the instructor cells, not the melanocytes.

8. The Xenopus melanoma model demonstrates the importance of:

A) Genetic Factors only
B) Environmental triggers only
C) Bioelectrical and Tissue Factors, too
D) None of the Above

9. The Xenopus melanoma model highlights the potential for developing cancer therapies that:

A) Focus solely on killing cancer cells.
B) Target bioelectric signaling pathways to reprogram cancer cells.
C) Ignore the role of the cellular microenvironment.
D) Only work in frogs.

10. True/False The Xenopus model suggests that only genetic based cancers exist.

A) True
B) False

11. Which of the below captures best what is so amazing about Instructor Cell effects in melanoma studies?

A) The Melanoma comes as a direct result of Instructor cells.
B) It is caused by direct changes to a melanocyte
C) A special set of cells, instructors, which have no cancer issues themselves, induce transformations on neighboring cells that did have anything directly affecting them.
D) None of the Above.

12. “Non-cell-autonomous” effects, in this situation, most accurately mean…

A) Only melanocytes, alone, control and determine their outcome.
B) The changes in Resting Potential can reach beyond the directly affected, initial cell.
C) Chemical pathways act entirely by themselves.
D) A and C

13. Instructor cells are…

A) Melanocytes.
B) A special type of cancerous tumors.
C) Cells that instruct neighboring cells into melanoma
D) B and C

14. When experimentors hyperpolarize the Instructor Cells:

A) Melanoma rates stay the same.
B) Melanoma transformation frequency lowers, and might be outright reversed, in some experiments.
C) No changes ever happen with bioelectricty,
D) None of the above

15. The Instructor Cell model provides:

A) Evidence of non-genetic sources of certain cancers
B) New targets of therapies such as focusing on the correct ion channels to achieve desired tissue outcomes.
C) A paradigm that says we might cure or lessen cancers in novel ways that aren’t focused on eradicating tumors and harming all the patient’s tissue via posion and cheomotheraphy.
D) All of the above.

16. When Instructor cells undergo Depolarization, nearby melanocytes

A) Stay exactly the same
B) Grow uncontrollably
C) Migrate all over
D) B and C

17. Can manipulating bioelctricity of the *right* cells lead to potential reversal of tumor and melanoma conditions?

A) No, only chemicals and surgery
B) Yes, that is suggested in some models and research
C) Never
D) Only works in genetics.

18. Which of the options best explain what Melanocytes do

A) Help send and process fast-acting nuerotransmitters for complex behaviors
B) Distribute Pigment in body
C) Allow for regeneration in amphibians.
D) Form Skin.

19. Melanocytes undergoing metasis in cancer can go:

A) Everywhere, it has zero limit in where to spread.
B) In Brain
C) Across blood vessels
D) B and C.

20. Serotonin, an important bioelectric-pathway signal between cells, are usually known as:

A) Genetic factors
B) Important ion channels
C) A neurotransmitter more associated with mental activities, emotions, in the brain.
D) None of the Above


Michael Levin Bioelectricity 101 Crash Course Lesson 18: Melanoma and Bioelectricity: Controlling Cancer Cell Behavior Answer Sheet

1. B

2. D

3. B

4. C

5. B

6. C

7. B

8. C

9. B

10. B

11. C

12. B

13. C

14. B

15. D

16. D

17. B

18. B

19. D

20. C


迈克尔·莱文 生物电 101 速成课程 第18课:黑色素瘤与生物电:控制癌细胞行为 摘要

  • 黑色素瘤是一种高度侵袭性的皮肤癌,起源于产生色素的细胞,称为黑色素细胞。
  • 莱文的研究使用非洲爪蟾(青蛙)胚胎作为模型系统来研究黑色素瘤,因为黑色素细胞很容易看到,并且它们的行为可以被追踪。
  • 非洲爪蟾胚胎中某些“指导细胞”的膜电位 (Vmem) 去极化可以诱导原本正常的黑色素细胞发生转移性黑色素瘤表型。 这种情况发生在没有基因突变或致癌物暴露的情况下。
  • 生物电变化会触发涉及神经递质血清素的信号级联反应,从而激活导致黑色素细胞增殖、迁移和侵袭增加的途径。
  • 相反,即使存在通常会促进黑色素瘤的因素,维持超极化的 Vmem 或干扰血清素信号通路也可以预防逆转黑色素瘤表型。
  • 该模型系统为某些癌症的非遗传起源提供了强有力的证据,并突出了靶向生物电信号的治疗潜力。
  • 指导细胞不一定会癌变。 指导细胞诱导没有受到任何直接干扰的邻近细胞转变为黑色素瘤。

迈克尔·莱文 生物电 101 速成课程 第18课:黑色素瘤与生物电:控制癌细胞行为

在上一课中,我们确定了癌症从根本上说是一种细胞通讯紊乱的疾病,通常涉及生物电信号的崩溃。 现在,让我们来看一个具体的、强有力的例子来说明这一原理:生物电与黑色素瘤(一种特别具有侵袭性和危险性的皮肤癌)之间的关系。 迈克尔·莱文的研究提供了惊人的证据,证明生物电操纵如何既能诱导能抑制黑色素瘤,为新的治疗方法带来了希望。

黑色素瘤起源于黑色素细胞,即产生黑色素的细胞,黑色素赋予皮肤、头发和眼睛颜色。 黑色素细胞通常存在于表皮(皮肤外层)的基底层,并具有特征性的分支形状。 在黑色素瘤中,这些细胞会癌变,不受控制地分裂,侵入周围组织,并经常扩散(转移)到身体的其他部位。

为了研究生物电和黑色素瘤之间复杂的相互作用,莱文的实验室使用了一个优雅的模型系统:非洲爪蟾 (Xenopus laevis) 的胚胎。 为什么是青蛙? 有几个原因使它们成为理想选择:

  1. 可见的黑色素细胞: 非洲爪蟾胚胎具有大而易于观察的黑色素细胞,这使得追踪它们的行为并观察它们的形状、数量和位置的变化变得简单。
  2. 快速发育: 非洲爪蟾胚胎在体外发育并且速度非常快,使研究人员能够在几天内观察到黑色素瘤的进展。
  3. 可操纵的生物电: 可以使用各种技术轻松操纵非洲爪蟾细胞的生物电特性,包括靶向离子通道的药物和编码特定离子通道的 mRNA 注射。

莱文工作的关键实验涉及操纵一组特定细胞(称为“指导细胞”)的膜电位 (Vmem)。 重要的是,这些不是黑色素细胞本身。 相反,它们是位于胚胎其他地方的细胞,通常抑制黑色素细胞中的黑色素瘤样行为。 它们实际上是通过其静息电压“指导”细胞和其他组织。

这是开创性的发现:当指导细胞去极化(内部变得不那么负)时,胚胎中原本正常的黑色素细胞会转变为转移性黑色素瘤表型。 它们开始:

  • 不受控制地增殖: 黑色素细胞的数量急剧增加。
  • 改变形状: 它们失去正常的、分支的形态,变得更细长和“线状”。
  • 迁移和侵袭: 它们移动到胚胎中的异常位置,包括侵入血管和神经管(大脑和脊髓的前体)。

这种转变在黑色素细胞本身没有任何基因突变的情况下发生,并且没有暴露于任何致癌物。 这纯粹是指​​导细胞生物电状态改变的结果。 这至关重要:它表明癌症表型可以通过操纵生物电来诱导。

这是如何运作的? 指导细胞的去极化会触发最终影响黑色素细胞的信号级联反应。 顺序如下:

  1. 指导细胞去极化: Vmem 的变化通常使用打开或阻断特定离子通道的药物来实现,例如氯离子通道开放剂伊维菌素。
  2. 改变的血清素信号传导: 去极化的指导细胞释放改变水平的神经递质血清素。 血清素通常被认为是与情绪调节有关的脑化学物质,但它在神经系统外的发育和细胞信号传导中也起着重要作用。
  3. 黑色素细胞途径的激活: 改变的血清素水平与黑色素细胞上的受体结合,激活促进增殖、迁移和侵袭的细胞内信号通路。 这些途径包括SLUG等基因,这是一种已知的转移标志物。

这个模型的美妙之处在于它允许研究人员剖析将生物电与癌症联系起来的精确机制。 他们可以识别所涉及的特定离子通道、充当信使的神经递质以及驱动黑色素瘤表型的下游基因。

更值得注意的是,相反的情况也是如此。 如果指导细胞超极化(内部变得更负),或者如果血清素信号通路被阻断,则黑色素瘤表型可以被预防甚至逆转。 即使存在另一种触发信号并激活癌基因的因素,情况也是如此。 这为靶向生物电信号的治疗潜力提供了强有力的证据。

想象一下这样一种情况,一个人有患黑色素瘤的遗传倾向,或者已经接触过致癌物。 通常,这可能会导致癌症的发展。 但是,如果我们能够进行生物电干预,在相关细胞中维持正确的 Vmem,或者阻断下游信号通路呢? 我们也许能够从一开始就防止癌症的发展,甚至逆转其进展。 这代表了操纵组织静息电位所提供的巨大控制。

这个非洲爪蟾黑色素瘤模型突出了几个关键原则:

  • 非细胞自主效应: 一组细胞(指导细胞)的生物电状态可以深刻地影响另一组细胞(黑色素细胞)的行为。 这强调了细胞微环境在决定细胞命运中的重要性。
  • 癌症的非遗传起源: 癌症可以无需基因突变即可诱导,突出了生物电等生理因素的关键作用。
  • 生物电调节的治疗潜力: 操纵生物电信号为癌症预防和治疗提供了一种有希望的新方法,旨在重新编程癌细胞,而不仅仅是杀死它们。
  • 随机性:虽然上述实验概述了当这些通路被正确改变时的一致效果,但通常情况下,诱导这些黑色素瘤转化(及其治愈)是随机传播的。

关于黑色素瘤和生物电的工作不仅仅是关于这种特定类型的癌症。 这是一个概念验证,证明了生物电信号控制细胞行为的能力以及靶向该系统以获得治疗益处的潜力。 它开启了癌症研究的新领域,超越了纯粹的遗传学观点,转向更全面的理解,其中包括生物电通讯的关键作用。


迈克尔·莱文 生物电 101 速成课程 第18课:黑色素瘤与生物电:控制癌细胞行为 小测验

1. 黑色素瘤起源于哪种类型的细胞?

A) 神经元
B) 黑色素细胞
C) 上皮细胞
D) 成纤维细胞

2. 为什么非洲爪蟾胚胎被用作研究黑色素瘤的模型系统?

A) 它们具有易于观察的黑色素细胞。
B) 它们发育迅速。
C) 它们的生物电特性可以很容易地被操纵。
D) 以上都是。

3. 在莱文的实验中,当指导细胞去极化时会发生什么?

A) 黑色素细胞变得超极化。
B) 黑色素细胞转变为转移性黑色素瘤表型。
C) 黑色素细胞死亡。
D) 黑色素细胞变得更加分化。

4. 非洲爪蟾模型中黑色素细胞向黑色素瘤表型的转化发生在:

A) 仅存在基因突变的情况下。
B) 仅在暴露于致癌物后。
C) 即使没有基因突变或致癌物暴露。
D) 仅在成年青蛙中。

5. 哪种神经递质参与了指导细胞去极化触发的信号级联反应?

A) 多巴胺
B) 血清素
C) 乙酰胆碱
D) 谷氨酸

6. 以下哪一项不是非洲爪蟾模型中诱导的黑色素瘤表型的特征?

A) 增殖增加
B) 细胞形状改变
C) 迁移和侵袭减少
D) 扩散到异常位置

7. 超极化指导细胞或阻断血清素信号传导会对黑色素瘤表型产生什么影响?

A) 它可以诱导黑色素瘤表型。
B) 它可以预防或逆转黑色素瘤表型。
C) 它没有影响。
D) 它只影响指导细胞,而不影响黑色素细胞。

8. 非洲爪蟾黑色素瘤模型证明了以下哪一项的重要性?

A) 仅遗传因素
B) 仅环境触发因素
C) 生物电和组织因素
D) 以上都不是

9. 非洲爪蟾黑色素瘤模型突出了开发癌症疗法的潜力,这些疗法:

A) 只专注于杀死癌细胞。
B) 靶向生物电信号通路以重新编程癌细胞。
C) 忽略细胞微环境的作用。
D) 只在青蛙身上起作用。

10. 对/错 非洲爪蟾 模型表明仅存在基因基础的癌症。

A) 对
B) 错

11. 下面哪一项最能说明黑色素瘤研究中指导细胞效应的惊人之处?

A) 黑色素瘤是指导细胞的直接结果。
B) 它是由黑色素细胞的直接变化引起的
C) 一组特殊的细胞,指导细胞,它们本身没有癌症问题,会诱导邻近细胞发生转化,而这些细胞并没有任何直接影响它们的东西。
D) 以上都不是。

12. 在这种情况下,“非细胞自主”效应最准确地意味着…

A) 只有黑色素细胞才能单独控制和决定它们的结果。
B) 静息电位的变化可以超出直接受影响的初始细胞。
C) 化学途径完全独立运作。
D) A 和 C

13. 指导细胞是…

A) 黑色素细胞。
B) 一种特殊类型的癌性肿瘤。
C) 指导邻近细胞进入黑色素瘤的细胞
D) B 和 C

14. 当实验者使指导细胞超极化时:

A) 黑色素瘤发生率保持不变。
B) 黑色素瘤转化频率降低,在某些实验中甚至可能完全逆转。
C) 生物电永远不会发生变化,
D) 以上都不是

15. 指导细胞模型提供:

A) 某些癌症非遗传来源的证据
B) 治疗的新靶点,例如专注于正确的离子通道以实现所需的组织结果。
C) 一种范式,表明我们可能会以新的方式治愈或减轻癌症,而不是专注于根除肿瘤并通过毒药和化疗损害患者的所有组织。
D) 以上都是。

16. 当指导细胞发生去极化时,附近的黑色素细胞

A) 保持完全相同
B) 不受控制地生长
C) 到处迁移
D) B 和 C

17. 操纵正确细胞的生物电能否导致肿瘤和黑色素瘤状况的潜在逆转?

A) 不,只有化学物质和手术
B) 是的,一些模型和研究表明了这一点
C) 永远不会
D) 仅适用于遗传学。

18. 以下哪个选项最能解释黑色素细胞的作用

A) 帮助发送和处理用于复杂行为的快速作用神经递质
B) 在体内分布色素
C) 允许两栖动物再生。
D) 形成皮肤。

19. 癌变的黑色素细胞可以进入:

A) 任何地方,它的扩散没有限制。
B) 大脑中
C) 穿过血管
D) B 和 C。

20. 血清素是一种重要的细胞间生物电通路信号,通常被称为:

A) 遗传因素
B) 重要的离子通道
C) 一种与大脑中的精神活动、情绪更相关的神经递质。
D) 以上都不是


迈克尔·莱文 生物电 101 速成课程 第18课:黑色素瘤与生物电:控制癌细胞行为 答案表

1. B

2. D

3. B

4. C

5. B

6. C

7. B

8. C

9. B

10. B

11. C

12. B

13. C

14. B

15. D

16. D

17. B

18. B

19. D

20. C