Gene regulatory networks exhibit several kinds of memory Quantification of memory in biological and random transcriptional networks Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction: What Was Observed?

  • Researchers explored how gene regulatory networks (GRNs) – the circuits that control gene activity in cells – can “remember” past events.
  • The study shows that brief, temporary stimuli can change a GRN’s long-term response, similar to how a short lesson can leave a lasting impression.
  • This “memory” is not stored by changing the genes themselves but by altering the overall activity pattern of the network.

What Is a Gene Regulatory Network (GRN)?

  • GRNs are systems where genes interact with each other to control when and how proteins are made.
  • They are often modeled as Boolean networks where each gene is either “on” (1) or “off” (0), much like a simple switch.
  • This binary approach makes it easier to simulate complex behaviors in computers.

Understanding Memory in GRNs

  • Definition of Memory: In this context, memory means that once a GRN is stimulated, its response remains even after the stimulus is removed.
  • It is similar to Pavlov’s classical conditioning – just as a dog learns to associate a bell with food, a GRN can learn to trigger a response from a neutral signal.
  • Key Terms:
    • UCS (Unconditioned Stimulus): A stimulus that naturally causes a response.
    • NS (Neutral Stimulus): A stimulus that initially has no effect on the response.
    • CS (Conditioned Stimulus): The neutral stimulus that, after pairing with the UCS, triggers the response.
    • R (Response): The outcome or activity generated by the GRN.

Methods: How Was Memory Tested?

  • Researchers used computer simulations with Boolean network models to represent GRNs.
  • An algorithm systematically tested various combinations of genes as potential inputs (stimuli) and outputs (responses).
  • Training Phase: The network was “trained” by repeatedly pairing the UCS with the NS, so that eventually the NS alone would trigger the response (like teaching a recipe by repeating the steps).
  • Testing Phase: After training, they checked if the response persisted even when only the NS was applied, confirming that the network had “learned” the association.

Types of Memory Found in GRNs

  • UCS-based Memory (UM): A direct stimulus causes a long-lasting response.
  • Pairing Memory (PM): A one-time pairing of stimuli leads to a stable response.
  • Transfer Memory (TM): The response becomes more general, similar to how one learned skill may apply to similar tasks.
  • Associative Memory (AM): Includes:
    • Long Recall Associative Memory (LRAM): Memory that lasts for a long time.
    • Short Recall Associative Memory (SRAM): Memory that fades more quickly.
  • Consolidation Memory (CM): The network stabilizes its new response over time.
  • Each type represents a different “flavor” of learning, much like various methods our brain uses to store memories.

Key Findings and Observations

  • GRNs from many different biological systems can store multiple types of memory.
  • Real biological GRNs exhibit significantly more memory capacity than randomly generated networks.
  • Memory capacity is higher in vertebrate networks and in differentiated (specialized) cell types compared to undifferentiated cells.
  • Although larger networks tend to have more memory, the specific wiring (architecture) of the network is crucial.
  • These observations suggest that evolution may have favored GRN designs that can “learn” from past events.

Biomedical and Synthetic Biology Implications

  • This research offers a new way to control cell behavior without altering the genetic code.
  • By “training” GRNs with timed stimuli, it may be possible to mimic the effects of powerful (but toxic) drugs using safer alternatives.
  • Such strategies could help explain why patients respond differently to the same treatment and guide personalized therapies.
  • In synthetic biology, designing circuits with built-in memory could lead to smarter, self-regulating biological systems.

Conclusion

  • The study provides a detailed framework for understanding how GRNs can store and use memory.
  • It demonstrates that GRNs can change their behavior based on past experiences without any permanent changes to their wiring.
  • This work bridges concepts from neuroscience and gene regulation, opening new avenues for biomedical interventions and synthetic biology designs.

观察到了什么? (引言)

  • 研究人员探讨了基因调控网络(GRN)如何“记住”过去的事件——这些网络负责控制细胞内基因的活动。
  • 研究表明,短暂的刺激能够改变GRN的长期反应,就像一个短暂的课程可以留下持久印象一样。
  • 这种“记忆”并非通过改变基因本身,而是通过改变整个网络的活动模式来实现的。

什么是基因调控网络 (GRN)?

  • GRN是指基因之间相互作用以控制蛋白质合成的系统。
  • 它们通常用布尔网络(Boolean network)来建模,每个基因只有“开”(1)或“关”(0)两种状态,就像简单的开关。
  • 这种二值化方法使得在计算机中模拟复杂行为变得更加简单。

理解GRN中的记忆

  • 记忆的定义:在这里,记忆指的是一旦GRN受到刺激,其反应会在刺激消失后仍然持续存在。
  • 这类似于巴甫洛夫经典条件反射——就像狗在听到铃声后学会流口水一样,GRN也可以学会让中性信号引发反应。
  • 关键术语:
    • 无条件刺激(UCS):自然会引起反应的刺激。
    • 中性刺激(NS):最初对反应没有影响的刺激。
    • 条件刺激(CS):经过与UCS配对后能够引发反应的刺激。
    • 反应(R):GRN所产生的结果或活动。

记忆测试方法

  • 研究人员使用布尔网络模型在计算机上模拟GRN的行为。
  • 算法系统地测试了不同基因组合作为刺激(输入)和反应(输出)的可能性。
  • 训练阶段:通过反复将UCS和NS配对,网络最终学会由NS单独引发反应,就像反复跟着菜谱操作一样。
  • 测试阶段:在训练后,检测是否仅使用NS就能保持反应,从而确认网络已“学会”这种关联。

GRN中发现的记忆类型

  • 基于UCS的记忆 (UM):直接刺激引起持久的反应。
  • 配对记忆 (PM):一次性配对刺激后产生稳定反应。
  • 转移记忆 (TM):经过训练后,反应变得更具普遍性,就像一种技能可以应用于类似任务一样。
  • 联想记忆 (AM):包括:
    • 长时联想记忆 (LRAM):记忆持续较长时间。
    • 短时联想记忆 (SRAM):记忆较快消退。
  • 巩固记忆 (CM):网络随着时间稳定了新的反应。
  • 每种记忆类型都类似于我们大脑存储记忆的不同方式。

主要发现与观察

  • 来自多种生物系统的GRN均能存储多种记忆类型。
  • 真实生物的GRN比随机生成的网络具有显著更高的记忆容量。
  • 在脊椎动物网络和分化细胞中,记忆现象更为普遍,而未分化细胞中则较少出现。
  • 虽然较大的网络通常拥有更多记忆,但网络的结构(连线方式)更为关键。
  • 这些结果表明,进化可能偏好那些能够“学习”过去经验的GRN结构。

生物医学及合成生物学的意义

  • 这一研究为不改变基因组编码而控制细胞行为提供了一种新方法。
  • 通过对GRN进行“训练”,可以利用时间控制的刺激来模仿高毒性药物的效果,从而使用更安全的替代品。
  • 这种策略有助于解释为何不同患者对同一种治疗的反应不同,并为个性化治疗提供指导。
  • 在合成生物学中,设计具有内建记忆功能的电路可以造就更智能、自我调节的生物系统。

结论

  • 该研究提供了一个详细的框架,用于理解GRN如何存储和利用记忆。
  • 结果证明,GRN可以基于过去的经验改变其行为,而无需永久改变其结构连线。
  • 这一工作将神经科学和基因调控的概念联系起来,为生物医学干预和合成生物学设计开辟了新途径。