Evolution and emergence higher order information structure in protein interactomes across the tree of life Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What Was Studied? (Introduction)

  • Scientists analyzed the protein interactomes (networks of protein–protein interactions) from over 1800 species, including bacteria, archaea, and eukaryotes.
  • The research aimed to understand how the internal wiring of cells is organized and how noise (uncertainty) affects these networks.
  • Protein interactomes can be thought of as a social network for proteins, where each protein is a node and each interaction is a connection between them.

Key Concepts and Definitions

  • Protein Interactome: A map of all the physical interactions between proteins in a cell.
  • Effective Information (EI): A measure of how much certainty exists in the interactions of the network. Higher EI means the interactions are more specific and reliable.
  • Causal Emergence: When small parts of a network are grouped into larger units (macro-nodes), the overall network may show increased effective information. This is like zooming out to see a clearer picture from a noisy background.
  • Certainty Paradox: A trade-off where having a high level of uncertainty (noise) can protect the network from failures, but too much uncertainty reduces the effectiveness of transmitting clear signals.

Methods and Analysis (Study Design)

  • Data Collection: Protein interactomes from 1840 species were obtained from the STRING database.
  • Network Modeling: Each protein is a node; interactions (edges) are normalized so that the probabilities of all interactions from a node add up to 1.
  • Measuring Uncertainty: The study calculated the entropy (a measure of randomness) in the network to determine the Effective Information (EI) of the protein interactions.
  • Coarse Graining: Researchers grouped sets of proteins into macro-nodes to see if this aggregation would increase the EI, revealing hidden higher order structures.
  • Statistical Testing: Robustness tests (such as random edge rewiring and using null models) were performed to confirm that the patterns observed were not due to random chance or biases in the data.

Results: Evolution and Network Effectiveness

  • Evolutionary Trend: The effectiveness (normalized EI) of protein interactomes tends to decrease over evolutionary time when looking at the microscale, meaning that uncertainty increases.
  • Bacteria vs Eukaryotes: Bacterial networks (prokaryotes) generally show higher effectiveness at the microscale compared to eukaryotic networks.
  • Emergence of Macroscales: In eukaryotes, when proteins are grouped into macro-nodes, the effective information increases, compensating for the lower effectiveness observed at the microscale.

Causal Emergence and Informative Macroscales

  • Coarse Graining Process: By grouping small, noisy parts of the network into larger, aggregate nodes, the hidden higher order structure becomes clearer.
  • Informative Macroscales: The study found that eukaryotic protein interactomes tend to form these informative higher scales more than prokaryotic ones.
  • Evolutionary Benefit: This multiscale organization allows cells to balance between having enough noise for resilience and enough certainty for effective signal transmission.

Resilience and the Certainty Paradox

  • Network Resilience: Resilience was measured by simulating the removal of nodes (to mimic failures or attacks) and observing changes in the network’s structure.
  • Macro vs Microscale: Nodes that are part of macro-nodes contribute more to the overall resilience of the network than those remaining at the microscale.
  • Balancing Act: The system uses high uncertainty at the microscale as a backup (providing resilience) while using clear, effective interactions at the macroscale for reliable functioning.

Discussion and Key Conclusions

  • Trade-offs in Design: There is a fundamental balance between having noisy, redundant interactions (which provide resilience) and clear, effective interactions (which provide precise control).
  • Evolutionary Advantage: The emergence of informative macroscales is a strategy that allows biological networks to be both robust against failures and effective in processing information.
  • Implications for Biology: Understanding these multiscale properties could help explain how cells maintain functionality despite inherent uncertainties and may offer insights into disease mechanisms and synthetic biology.
  • Future Research: The framework developed in this study can be applied to other types of biological networks such as gene regulatory or brain networks to further investigate these trade-offs.

Key Takeaways

  • Protein interactomes are complex and noisy networks that manage both uncertainty and effective communication.
  • Effective Information (EI) quantifies the clarity of interactions in the network.
  • Grouping proteins into macro-nodes (coarse graining) can reveal hidden, more reliable higher order structures, especially in eukaryotic cells.
  • This multiscale organization helps resolve the certainty paradox by balancing resilience and effective signal transmission.

观察到的研究内容 (引言)

  • 科学家分析了来自1800多个物种的蛋白质互作网络,这些网络包括细菌、古菌和真核生物。
  • 研究的目的是理解细胞内部的连接结构,以及噪音(不确定性)如何影响这些网络的功能。
  • 蛋白质互作网络可以看作是蛋白质的社交网络,每个蛋白质作为一个节点,相互作用作为节点之间的连接。

关键概念和定义

  • 蛋白质互作网络: 展示细胞内所有蛋白质相互作用的图谱。
  • 有效信息 (EI): 衡量网络中相互作用确定性的指标,EI值越高表示相互作用越清晰可靠。
  • 因果涌现: 当将网络中的小部分节点组合成较大的单元(宏观节点)时,有效信息得到提升,就像从嘈杂中看清全局。
  • 确定性悖论: 网络中存在的噪音既能提供抗干扰能力,也会降低信号传递的有效性,两者之间存在权衡。

方法和分析 (研究设计)

  • 数据收集: 从STRING数据库中获取了1840个物种的蛋白质互作网络。
  • 网络建模: 每个蛋白质作为一个节点,蛋白质间的相互作用为边,并将每个节点的边归一化(总和为1)。
  • 不确定性测量: 通过计算节点输出的熵来衡量网络中的随机性,从而确定有效信息 (EI)。
  • 粗粒化: 通过将一组蛋白质组合成宏观节点,揭示出具有更高有效信息的隐藏结构。
  • 统计测试: 采用随机重连和空模型等方法进行稳健性测试,以确保观察到的结果不是偶然产生的。

结果: 进化与网络有效性

  • 进化趋势: 随着进化,蛋白质互作网络在微观尺度上的有效性下降,不确定性逐渐增加。
  • 细菌与真核生物: 细菌网络在微观尺度上通常表现出较高的有效性,而真核生物则较低。
  • 宏观涌现: 在真核生物中,通过将蛋白质组合成宏观节点后,有效信息显著提升,弥补了微观尺度的不足。

因果涌现与信息性宏观结构

  • 粗粒化过程: 将网络中部分节点组合成宏观节点,能够揭示出隐藏的高层次结构并提高有效信息。
  • 信息性宏观结构: 真核生物的蛋白质互作网络更容易形成这种宏观结构,显示出进化优势。
  • 进化好处: 这种多尺度组织使得细胞在保持韧性的同时,也能有效传递信号。

韧性与确定性悖论

  • 网络韧性: 通过模拟节点移除(模拟故障或攻击)来衡量网络对干扰的抵抗能力。
  • 宏观与微观: 被组合成宏观节点的蛋白质对网络整体韧性的贡献更大,而单独存在的微观节点则较弱。
  • 平衡机制: 微观层面的高不确定性提供了冗余和备份,而宏观层面的组织则确保了信号传递的清晰性和有效性。

讨论和关键结论

  • 设计权衡: 生物系统在进化过程中需要在噪音(提供韧性)与有效信号传递之间找到平衡。
  • 进化优势: 信息性宏观结构的出现使生物网络既能抵御干扰,又能高效传递信息。
  • 研究意义: 揭示这些多尺度特性有助于理解细胞功能、疾病机制以及进化的基本原理。
  • 未来方向: 这一研究框架可以推广到基因调控网络或脑网络,进一步探索多尺度系统的权衡问题。

主要收获

  • 蛋白质互作网络是复杂且充满噪音的系统,但同时也具有明确的信息传递通路。
  • 有效信息 (EI) 帮助量化网络中信号的清晰度和确定性。
  • 通过粗粒化方法,可以揭示隐藏的宏观结构,这在真核生物中尤为明显。
  • 这种多尺度组织解决了确定性悖论,实现了韧性和有效性之间的平衡。