Electricity of Life: Wonders of Bioelectricity and Regenerative Biology Prof Michael Levin Bioelectricity Podcast Notes

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction: Bioelectricity and Intelligence

  • Levin discusses bioelectricity’s role in biology and medicine, emphasizing its importance beyond genetics and epigenetics. He’s interested in how minds exist in the physical world and bioelectricity provides insight on how simple cells have scaled up goals.
  • Intelligence is defined (following William James) as “the ability to achieve the same goal by different means.” This definition highlights adaptability, not specific brain structures. It emphasizes the *spectrum* of cleverness, from magnets to Romeo & Juliet.
  • The book “The Body Electric” by Robert Becker had the greatest influence. Burr forseeing the importance of bioelectricity by only utilizing simple voltage measurements also had a big impact.

Bioelectricity: Beyond Genetics

  • The genome specifies protein components (the “hardware”). Bioelectricity is the “software” that determines *what* the hardware does. It’s not just another *layer* of complexity; it’s a higher-level organizational principle.
  • Analogy to Computers: The genome is like defining transistors. Bioelectricity is like the algorithms that make those transistors perform computations. Trying to program a computer by soldering is inefficient; bioelectricity is the higher-level interface.
  • Neural Decoding Analogy: Just as brain electrophysiology encodes memories and goals, bioelectricity in the rest of the body encodes *anatomical* goals and memories.
  • Cloning vs. “You”: Cloning your DNA duplicates the body plan, *but not the mind*. The mind comes from experiences and physiological states (including bioelectricity). The body plan is reliably *produced*, but not *directly encoded* in the DNA.
  • Analogy of Logic Gate: You only know the *components*, the transistors and how they link, you get a Logic gate (such as Nand), which then performs computations never written, but resulting as consequences of how things were organized.

The Observer and “Polycomputation”

  • Biological processes (behavior, intelligence, computation) are *observer-relative*. The system itself can be the observer, forming a “strange loop” (Hofstadter).
  • Multiple Viewpoint Computation: same set of physical events are different computations from different viewpoints.

Experiments: Frog Eye Relocation and Picasso Frogs

  • Eye on the Tail Experiment demonstrates remarkable plasticity, showing that even if sensory system are NOT located to their normal placement, the sensory still is processed for visual input.. Frog’s visual system *immediately* adapts to an eye relocated to the tail. The eye doesn’t connect to the brain directly, yet the frog can *see* through it. This challenges the notion of hardwired development.
  • Picasso Frog, which demonstrates Robust Morphogenesis: Tadpole faces can be rearranged (“Picasso-fied”), yet the organs move *intelligently* to the correct final positions. This isn’t hardwired; it’s a homeostatic process. Cells “know” where to go *relative to the goal*, not by following fixed instructions.

Homeostasis, Navigation, and the “Target Morphology”

  • Morphogenesis and regeneration are viewed as a *navigational* process in “morphospace” (the space of possible anatomical forms). Cells are working, similar to autonomous vehicles.
  • Like a thermostat, a developing/regenerating system minimizes the error between its current state and a “target morphology” (a setpoint).
  • The Prediction: If we find and can rewrite this “setpoint,” we can control anatomical outcomes *without micromanaging the genetics or knowing every detail*. This is crucial for regenerative medicine.
  • Navigational algos only works, by contrasting itself vs target and its goal.
  • The target morphology (setpoint) is encoded *bioelectrically*.

Bioelectrical Imaging and “Hacking the System”

  • Voltage-sensitive dyes allow visualizing the electrical patterns in developing embryos *before* anatomical structures appear. These patterns prefigure the future anatomy (e.g., the “electric face”).
  • Electrical patterns are in frogs, seen *before* anatomical.
  • These electrical patterns *instruct* gene expression and anatomical development. By mimicking these patterns, you can induce structures in the wrong places (e.g., an eye on the gut).
  • This is “hacking the system”: Evolution has provided a bioelectrical interface, and we’re learning to use it. Cells respond to the *error signal* represented by the electrical pattern.
  • No use of *external* electric. Instead using drugs on native ION channels.

Planaria: Immortality, Regeneration, and Memory

  • Planaria are immortal, highly regenerative (can regrow any body part), and demonstrate memory transfer after decapitation (the regrown head remembers).
  • Two-Headed Planaria: The electrical pattern (“one head, one tail”) can be *rewritten* to create two-headed worms. This altered pattern is *stable*: cutting a two-headed worm results in *another* two-headed worm. It’s a non-genetic “memory” of the body plan. The “target morpholopy”.
  • The genome of Planaria looks “cancer” because all cells has varied number of chromosomes. Despite bad “genome” have “perfect” anatomical control. This algorithm is Robust to *ignore* genetic defects, except via rewriting electric signal, aka *algorithm*, to rewrite target-morphology.
  • No mutant genetic Planaria, because target-morphology “algorithm” so strong to overcome them.

Implications for Regenerative Medicine

  • Principles of regeneration are ancient and conserved across species, meaning insights from planaria and frogs are *likely* applicable to humans.
  • Bioelectric signals are a very compact encoding for building anatomies. (e.g. telling them build leg there).
  • Goal: Manipulate the bioelectric “software” to guide regeneration and potentially reverse aging or treat cancer. The bioelectric state is the communication for anatomical change and instruction. Treating cancer by normalizing cells. Connecting disconencted cancer cells.
  • This involves using “electroceuticals” (drugs targeting ion channels) to alter the bioelectric patterns, *not* genetic manipulation. Wearable Bioreactors and gels, not electrodes or radiation, is the methodology to *tell cells to rebuild at an injurt* by open/closing correct ion channel as encoded.
  • Bioelectric Communication Not-Local. Can affect cells very far, even the belly affecting brains.

Collective Intelligence and Multi-Scale Competency

  • All intelligence is collective; no indivisible intelligence exists. We are “walking bags of neurons.”
  • “Emergence” is not an explanation; it’s a label for the unsolved problem of how local goals scale up to larger goals. Levin proposes a theory of how cognition scales.
  • “Cognitive Light Cone”: The size of the largest goal a system can pursue. Bacteria have tiny light cones; humans have large ones.
  • System bends action spaces of sub parts. Electrons moves specific ways to *calculate* PI.
  • No complete comprehension for sub-component neuron, for example, is possible, of the main-brain and the totality of decision making.

Ending

  • Always Breadth-first in approaching problems: Outline, Fill-details, so can divide work into smaller steps, separating Creativity from “Mechanical”.

导言:生物电与智能

  • 莱文探讨了生物电在生物学和医学中的作用,强调了它超越遗传学和表观遗传学的重要性。他对思维如何存在于物理世界中感兴趣,生物电为了解简单细胞如何扩大目标提供了见解。
  • 智能被定义为(遵循威廉·詹姆斯的定义)“通过不同方式实现同一目标的能力”。这个定义强调的是适应性,而不是特定的大脑结构。它强调的是聪明程度的*光谱*,从磁铁到罗密欧与朱丽叶。
  • 罗伯特·贝克尔的著作《The Body Electric》影响最大。伯尔仅利用简单的电压测量就预见到了生物电的重要性,这也产生了巨大的影响。

生物电:超越遗传学

  • 基因组指定蛋白质成分(“硬件”)。生物电是决定硬件*做什么*的“软件”。它不仅仅是复杂性的另一*层*;它是一个更高层次的组织原则。
  • 与计算机类比:基因组就像定义晶体管。生物电就像使这些晶体管执行计算的算法。试图通过焊接来编程计算机是低效的;生物电是更高级别的接口。
  • 神经解码类比:正如大脑电生理学编码记忆和目标一样,身体其他部位的生物电编码*解剖学*目标和记忆。
  • 克隆与“你”:克隆你的DNA会复制身体蓝图,*但不会复制思维*。思维来自经验和生理状态(包括生物电)。身体蓝图在DNA中可靠地*产生*,但不是*直接编码*。
  • 逻辑门类比:你只知道*组件*,晶体管以及它们如何连接,你会得到一个逻辑门(如Nand),然后执行从未编写过的计算,而是作为事物组织方式的结果。

观察者与“多重计算”

  • 生物过程(行为、智能、计算)是*相对于观察者的*。系统本身可以成为观察者,形成一个“奇异循环”(霍夫施塔特)。
  • 多视点计算:同一组物理事件从不同视点来看是不同的计算。

实验:青蛙眼睛重新定位和毕加索青蛙

  • 尾巴上的眼睛实验展示了卓越的可塑性,表明即使感觉系统没有定位到它们的正常位置,感觉仍然会被处理为视觉输入。青蛙的视觉系统*立即*适应重新定位到尾巴的眼睛。眼睛不直接连接到大脑,但青蛙可以通过它*看到*。这挑战了硬连线发育的概念。
  • 毕加索青蛙,展示了稳健的形态发生:蝌蚪的脸可以重新排列(“毕加索化”),但器官会*智能地*移动到正确的最终位置。这不是硬连线的;这是一个稳态过程。细胞“知道”相对于目标要去哪里,而不是遵循固定的指令。

体内平衡、导航和“目标形态”

  • 形态发生和再生被视为“形态空间”(可能的解剖形式空间)中的*导航*过程。细胞在工作,类似于自动驾驶车辆。
  • 像恒温器一样,发育/再生系统将其当前状态和“目标形态”(设定点)之间的误差最小化。
  • 预测:如果我们找到并可以重写这个“设定点”,我们就可以在*不微观管理遗传学或不知道每个细节的情况下*控制解剖结果。这对于再生医学至关重要。
  • 导航算法只有通过对比自身与目标及其目标才能工作。
  • 目标形态(设定点)是*生物电编码的*。

生物电成像和“破解系统”

  • 电压敏感染料允许在解剖结构出现*之前*可视化发育中胚胎的电模式。这些模式预示了未来的解剖结构(例如,“电脸”)。
  • 在青蛙中看到电模式,在解剖结构*之前*。
  • 这些电模式*指导*基因表达和解剖发育。通过模仿这些模式,您可以在错误的地方诱导结构(例如,肠道上的眼睛)。
  • 这是“破解系统”:进化提供了一个生物电接口,我们正在学习使用它。细胞对电模式表示的*错误信号*做出反应。
  • 不使用*外部*电流。而是使用针对天然离子通道的药物。

涡虫:永生、再生和记忆

  • 涡虫是不朽的,高度可再生的(可以再生任何身体部位),并在斩首后表现出记忆转移(再生头部会记住)。
  • 双头涡虫:电模式(“一个头,一个尾巴”)可以*重写*以创建双头蠕虫。这种改变的模式是*稳定的*:切割双头蠕虫会导致*另一个*双头蠕虫。这是身体计划的非遗传“记忆”。“目标形态”。
  • 涡虫的基因组看起来像“癌症”,因为所有细胞都有不同数量的染色体。尽管有糟糕的“基因组”,但具有“完美的”解剖控制。该算法是稳健的,可以*忽略*遗传缺陷,除了通过重写电信号,又名*算法*,来重写目标形态。
  • 没有突变基因涡虫,因为目标形态“算法”如此强大以至于可以克服它们。

对再生医学的影响

  • 再生原理是古老的,并且在不同物种中是保守的,这意味着来自涡虫和青蛙的见解*很可能*适用于人类。
  • 生物电信号是构建解剖结构的一种非常紧凑的编码。(例如,告诉它们在那里建立腿)。
  • 目标:操纵生物电“软件”来指导再生,并可能逆转衰老或治疗癌症。生物电状态是解剖变化和指令的通信。 通过规范化细胞来治疗癌症。连接断开的癌细胞。
  • 这涉及使用“电疗药物”(靶向离子通道的药物)来改变生物电模式,*而不是*基因操作。可穿戴生物反应器和凝胶,而不是电极或辐射,是通过打开/关闭正确编码的离子通道来*告诉细胞在受伤时重建*的方法。
  • 生物电通信非本地。可以影响非常远的细胞,甚至腹部也会影响大脑。

集体智能和多尺度能力

  • 所有的智能都是集体的;不存在不可分割的智能。我们是“行走的神经元袋”。
  • “涌现”不是一种解释;它是局部目标如何扩展到更大目标的未解决问题的标签。莱文提出了一种认知如何扩展的理论。
  • “认知光锥”:系统可以追求的最大目标的大小。细菌有微小的光锥;人类有大的光锥。
  • 系统会弯曲子部分的动作空间。电子以特定方式移动以*计算*PI。
  • 对于子组件神经元来说,例如,不可能完全理解主脑和所有决策。

结尾

  • 在解决问题时始终采用广度优先:大纲、填充细节,因此可以将工作分成更小的步骤,将创造力与“机械”分开。