Cellular migration may exhibit intrinsic left right asymmetries A meta analysis Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What Was Observed? (Introduction)

  • Most vertebrates have bodies that look symmetric on the outside, but inside, they are asymmetric. For example, organs like the heart, lungs, and stomach are placed asymmetrically within the body.
  • Understanding how the body forms this left-right (LR) asymmetry is crucial because problems with laterality (left-right placement of organs) happen in about 1 in 8,000 births.
  • The paper focuses on understanding how cells decide their left-right position. It suggests that this process happens very early in development and can be observed in individual cells, not just in the whole body.

What is Left-Right Asymmetry?

  • Left-right asymmetry refers to the fact that our internal organs are not symmetrically placed. For example, the heart is on the left side of the body, while the liver is on the right.
  • Establishing left-right asymmetry is an important part of embryonic development. If it goes wrong, it can cause birth defects.

What are the Models of Left-Right Asymmetry?

  • There are three main models that explain how left-right asymmetry happens in embryos:
    • The **ciliary model**: This model suggests that cilia (tiny hair-like structures) move fluid around the embryo to establish left-right bias.
    • The **chromatid segregation model**: This suggests that the chromosomes in cells are asymmetrically distributed during the first cell division, setting up the left-right difference from the start.
    • The **intracellular model**: This model proposes that the cells themselves are “chirally” (have a handedness) and that their internal machinery, like ion pumps and channels, directs them to be asymmetrical. This model was the main focus of the research paper.

What Did the Researchers Do? (Study Approach)

  • The researchers wanted to test if cells show a left-right bias when they move towards an attractant, such as a chemical or electrical signal.
  • They analyzed published studies on how cells migrate in response to chemical (chemotaxis) and electrical (galvanotaxis) signals.
  • They specifically wanted to see if there was a consistent left-right bias in the way cells move.
  • The hypothesis: If cells have intrinsic (built-in) left-right asymmetry, they will show a preference for moving to the left or right in response to stimuli.

What Did They Find? (Results)

  • The researchers found that many different types of cells showed consistent left-right migration biases when exposed to electrical or chemical gradients.
  • Interestingly, some cells preferred the left side, and others preferred the right side. For example:
    • **Left-biased cells**: These included cells from connective tissue, some neural cells, and stem cells.
    • **Right-biased cells**: These included keratinocytes (skin cells), epithelial cells, and immune cells like neutrophils.
  • Additionally, they found that cancer cells from different types of cancer (e.g., lung, breast, prostate) also exhibited a left-right bias in their migration.

What Happened When They Disrupted the Cells? (Treatments)

  • The researchers tested what would happen if they interfered with the cells’ cytoskeleton or ion channels (the parts of cells that help them move and sense their environment).
    • When they disrupted the cytoskeleton (the cell’s “scaffold”) or ion flow (like blocking the channels that allow charged particles to pass through the cell), the cells no longer showed the left-right migration bias.
  • These findings support the idea that the internal cell structure (cytoskeleton) and the bioelectric signals (ion channels and gradients) play a key role in determining the left-right asymmetry.

What Did the Researchers Conclude? (Discussion)

  • The researchers concluded that left-right biases in migration are intrinsic (built into the cells themselves) and are not just a result of environmental factors like fluid flow in the embryo.
  • The fact that disrupting the cytoskeleton or ion channels stopped the left-right bias strongly suggests that the cells’ internal structure and electrical properties control their migration direction.
  • The findings support the intracellular model of left-right asymmetry, which proposes that early developmental asymmetry originates from the chiral behavior of individual cells.
  • Future research could focus on understanding exactly how ion gradients and the cytoskeleton work together to create these left-right biases at the cellular level.

Key Terms Explained

  • Galvanotaxis: The movement of cells in response to an electric field.
  • Chemotaxis: The movement of cells towards or away from a chemical attractant.
  • Cytoskeleton: The network of fibers inside a cell that gives it shape and helps it move.
  • Ion channels: Proteins that allow ions (charged particles) to pass in and out of cells, affecting cell movement and function.

实验观察结果 (引言)

  • 大多数脊椎动物的外部看起来对称,但内部却是不对称的。例如,心脏、肺和胃等器官的放置是非对称的。
  • 理解身体如何形成这种左-右(LR)不对称性非常重要,因为左-右位置的问题大约发生在每8000个出生中就有1例。
  • 本文集中探讨了细胞如何决定它们的左-右位置。研究表明,这一过程在发育的早期就会发生,并且可以在个别细胞中观察到,而不仅仅是在整个身体中。

什么是左-右不对称性?

  • 左-右不对称性指的是我们的内部器官并不是对称放置的。例如,心脏位于身体的左侧,而肝脏则位于右侧。
  • 左-右不对称性在胚胎发育过程中非常重要。如果它出错,可能会导致出生缺陷。

左-右不对称性的模型是什么?

  • 有三种主要的模型来解释胚胎中如何产生左-右不对称性:
    • **纤毛模型**:该模型认为左-右轴是通过胚胎中纤毛(微小的毛发状结构)的运动来建立的,产生左-右偏向的液流。
    • **染色体分配模型**:该模型认为在胚胎的第一阶段,染色体的不对称分布就确定了左右的差异。
    • **细胞内模型**:该模型认为左-右轴的形成在发育的早期就已经开始,细胞内部的“手性”(左右性)结构决定了这些差异。这是本文研究的核心。

研究者做了什么? (研究方法)

  • 研究者想要测试细胞在向吸引物(如化学或电信号)移动时是否表现出左-右偏向。
  • 他们分析了有关细胞如何在化学(化学趋化)和电(电趋化)梯度下迁移的已发表研究。
  • 他们特别想看看细胞在迁移过程中是否表现出一致的左-右偏向。
  • 假设:如果细胞具有内在的左-右不对称性,那么它们在反应刺激时将表现出向左或向右的偏向。

他们发现了什么? (结果)

  • 研究者发现许多不同类型的细胞在暴露于电或化学梯度时,表现出了持续的左-右偏向迁移。
  • 有趣的是,有些细胞偏向左边,其他细胞则偏向右边。例如:
    • **左偏的细胞**:这些细胞来自结缔组织、某些神经细胞和干细胞。
    • **右偏的细胞**:这些细胞包括角质形成细胞(皮肤细胞)、上皮细胞和免疫细胞如中性粒细胞。
  • 此外,他们还发现不同类型癌症的癌细胞(例如肺癌、乳腺癌、前列腺癌)在其迁移中也表现出了左-右偏向。

当他们干扰细胞时发生了什么? (治疗)

  • 研究者测试了如果干扰细胞的细胞骨架或离子通道(帮助细胞移动和感知环境的部分)会发生什么。
    • 当他们干扰细胞骨架(细胞的“支架”)或离子流(例如,阻止离子通道使带电粒子进出细胞时),细胞不再表现出左-右的偏向迁移。
  • 这些发现支持了这样一个观点:细胞的内部结构(细胞骨架)和生物电信号(离子通道和梯度)在决定它们的迁移方向中发挥着关键作用。

他们得出了什么结论? (讨论)

  • 研究者得出结论,细胞迁移中的左-右偏向是细胞内在的(细胞自身决定的),而不仅仅是由于像胚胎中的液流等环境因素。
  • 细胞骨架或离子通道的干扰使测量的偏向消失,这强烈暗示细胞的内部结构和电信号决定了它们的迁移方向。
  • 这些发现支持了细胞内模型(细胞在发育早期就有内在的左右不对称性),并且提示未来的研究可以深入了解离子梯度和细胞骨架如何共同工作,创造细胞内部的一致的左-右偏向。

关键术语解释

  • 电趋化:细胞对电场的反应,表现为朝向或远离电场的迁移。
  • 化学趋化:细胞对化学物质的反应,表现为朝向或远离化学吸引物的迁移。
  • 细胞骨架:细胞内的纤维网络,给细胞提供形状并帮助它移动。
  • 离子通道:允许带电粒子通过细胞膜的蛋白质,对细胞的功能和迁移有重要影响。