Can We Create Artificial Life with Bioelectricity?

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Can We Create Artificial Life with Bioelectricity? Summary

  • Beyond Traditional Definitions: The question forces us to rethink what we mean by “life” and “artificial.” Are we talking about creating something entirely from scratch, or manipulating existing biological systems?
  • Not “Frankenstein”: This isn’t about stitching together body parts. It’s about understanding and harnessing the fundamental principles of biological organization.
  • Bioelectricity as a Control Mechanism: Bioelectric signals – patterns of voltage across cells – play a crucial role in shaping living organisms. Manipulating these signals offers a powerful way to control biological form and function.
  • “Living Machines”: We’re already creating “living machines” – like xenobots and anthrobots – by rearranging existing cells and exploiting their inherent self-organizing abilities.
  • Synthetic Biology: This is a key area of research in *synthetic biology* – the design and construction of new biological systems.
  • Bottom-Up vs. Top-Down:
    • Bottom-Up: Trying to build life from scratch, molecule by molecule (extremely difficult).
    • Top-Down: Using existing cells and manipulating their bioelectric signals to create new forms and functions (more feasible in the short term).
  • The “Anatomical Compiler” Vision: The long-term goal is to develop something like an “anatomical compiler” – a system that can translate a desired biological structure into a set of bioelectric instructions.
  • Ethical Considerations: Creating or manipulating life raises profound ethical questions about our responsibilities and the potential consequences.
  • Partial, synthetic “life” vs “Life”: Discussions often centre around how to “define”, or even distinguish, bioelectricity as part of research.
  • Beyond structure, organization, behaviours: There also remains crucial philsophical concepts that go beyond structure and “behaviors”, consciousness/cognition.

Redefining “Life” and “Artificial”: What Do We Mean?

The question “Can we create artificial life with bioelectricity?” immediately forces us to confront some fundamental questions: What do we *mean* by “life”? And what do we mean by “artificial”?

Traditionally, we’ve distinguished between “living” things (organisms that grow, reproduce, and adapt) and “non-living” things (rocks, machines, etc.). But the line is becoming increasingly blurred, especially as we learn more about the fundamental principles of biological organization.

Are we talking about creating life *entirely from scratch* – building a cell from individual molecules? That’s an incredibly challenging task, and we’re still a long way from achieving it. Or are we talking about something more subtle – taking existing biological components (cells) and rearranging them, manipulating their communication, to create something *new* and *functional*?


Not Frankenstein: Building with Biology, Not Body Parts

It’s important to dispel the image of “Frankenstein” – stitching together body parts to create a monster. That’s *not* what we’re talking about here. We’re talking about understanding and harnessing the *fundamental principles* of biological organization, not just assembling pre-existing parts.

Michael Levin, in his various publications, online talks, considers these implications, and defines very carefully about distinctions, about a latent property/ability – to “bring out” surprising and unqiue behaviors or outcomes – when cells no longer undergo usual restrictions; to do those cutting edge research is never a “playing god”. His concept on possibilities in nature has powerful and far-reaching applications. To do the research represents a search, a finding of such inherent existing capacity (within, not designed). These include discussions regarding concepts including:

  • Latent Potential,
  • Morphospace.

Bioelectricity: The Conductor of Biological Form

As we’ve explored throughout this series, *bioelectricity* – the patterns of voltage across cells and tissues – plays a crucial role in shaping living organisms. These bioelectric signals act as a kind of “software” that controls how the “hardware” (genes and proteins) is used, guiding development, regeneration, and other processes.

Manipulating bioelectric signals offers a powerful way to *control* biological form and function. It’s like rewriting the instructions that tell cells how to behave and how to organize themselves.


“Living Machines”: We’re Already Doing It (Sort Of)

In a sense, we’re *already* creating “artificial life” – or at least, “artificial living systems” – using bioelectricity. Consider these examples:

  • Xenobots: These tiny, self-propelled “machines” are created from frog embryonic cells. They’re not genetically modified; their novel behaviors arise from rearranging the cells and exploiting their inherent self-organizing abilities.
  • Anthrobots: Similar to xenobots, but made from *human* tracheal cells. These structures can move around and even promote the repair of damaged nerve tissue *in vitro*.

Scientists have been finding never-before-seen evidence, demonstrating that structure building can extend outside the usual expectations of biology, by creating Xenobots (frog skin tissues self-assembled), Anthrobots (human respiratory-tissue clusters that solves maze).

These are not “life” in the traditional sense – they’re not self-replicating organisms that evolve over generations. But they are *living systems* that exhibit novel, designed behaviors. They are “machines” built from biological components, and their behavior is, at least in part, controlled by bioelectricity. It represent an answer that the questions for a “created living form” is already here, not a far future vision – at least at early proof of concept.


Synthetic Biology: Designing Life from the Bottom Up and the Top Down

These “living machines” are examples of *synthetic biology* – a field that aims to design and construct new biological systems, often by combining engineering principles with biological components.

There are two main approaches to synthetic biology:

  • Bottom-Up: Trying to build life from scratch, starting with individual molecules (like DNA and proteins) and assembling them into increasingly complex structures. This is an incredibly difficult approach, and we’re still in the very early stages.
  • Top-Down: Taking existing biological systems (like cells) and modifying them, rearranging them, or controlling their communication to create new forms and functions. This is the approach used to create xenobots and anthrobots, and it’s proving to be much more feasible in the short term.

Dr. Levin, Dr. Bongard research teams demonstrate some evidence that existing systems exhibit those “unexpected structures/tissue formation”, a new method – going past gene, chemicals, bottom-up arrangement approach.


The “Anatomical Compiler”: Programming Biological Form

The long-term vision for this field is to develop something like an “Anatomical Compiler” – a system that can take a desired biological structure (e.g., a specific organ, a tissue with a particular function) and translate that into a set of bioelectric instructions that will guide cells to build it. Bioelectric and electrical studies suggest possible mechanism that goes past typical signaling (that is relatively limited) .

We aren’t putting together a detailed construction spec and order, much as building blocks. It means there exists top-down approach possible: much as one specifies, “grow new hand”.

This is still a distant goal, but research with xenobots, anthrobots, and other model systems is providing crucial insights into how bioelectricity controls biological form and how we can manipulate it.


Ethical Considerations: Playing with Life

The ability to create or manipulate life, even at this relatively simple level, raises profound ethical questions. Some considers the topic, if done too far, might be too dangerous:

  • If we had achieved capabilities to build biological parts, tissues, structures (by bioelectric means, chemicals, or a future “compiler”) at industrial-scales and with extreme complexity/diversity (not the basic form of Xenobots now): what if they become harmful or a source of biological concerns.
  • Synthetic minds/life has consciousness: Can newly “arranged” “artificial life” have the ability to “think”? Or to suffer? To “feel pain”? There is simply a lack of proper consciousness, feeling, understanding to define “awareness”. Dr. Levin talks and explains that there’s no real framework; science only shows how cells and system can be controlled and exhibit cognitive traits. The rest (pain, awareness) is unknown. It involves many unknowns.
  • Unintended consequences. There are many scientists concerned and have ongoing discussions and talks at public levels (including with Dr Levin), that, by tinkering/experimentation:
    • what are some other consequences. How do they evolve or react, what risk could potentially be.
    • how to safeguard against runaway and “synthetic biology” creating possible existential/dangerous issues to life and earth’s existing creatures/planet.

We need to consider:

  • Our Responsibilities: What are our responsibilities to these new forms of life, even if they are “artificial”? Do they have any moral standing?
  • Potential Risks: What are the potential risks of creating or manipulating life? Could we accidentally create something harmful or dangerous?
  • Unintended Consequences: Even if our intentions are good, could our interventions have unforeseen and negative consequences?
  • Regulation:What type of framework to avoid potential disaster. How much monitoring, safeguarding do these new area of research, capabilities demand.
  • Is-ought Even if science has knowledge and “how to”: how does, or can, this capability translate into responsible and correct next-steps (how ought we treat all entities).

These are complex questions with no easy answers. But it’s essential that we grapple with them as we move forward in this exciting and potentially transformative field.

There’s no simple “Neutral choice”. By acting, one changes new, emerging science trajectory (such as accidental sentience or artificial biology that can create “unintended problems”, e.g. defects). By doing nothing, that too involve crucial concerns – cancer, development, health will keep taking victims. Humanity is locked into this position of having great knowledge that goes past older expectations and discoveries (we can no longer “hide” from our own learning); one of these options will always lead to something and a type of outcome. Both Levin, other great thinkers continue discussions with philosophy communities on ideas/direction/ethics on what-ifs (what should, and could, guide best framework), not limited to biology and chemistry.


我们可以用生物电创造人造生命吗?摘要

  • 超越传统定义: 这个问题迫使我们重新思考“生命”和“人工”的含义。我们是在谈论完全从头开始创造某种东西,还是操纵现有的生物系统?
  • 不是“科学怪人”: 这不是关于拼接身体部位。这是关于理解和利用生物组织的基本原理。
  • 生物电作为一种控制机制: 生物电信号 —— 细胞之间的电压模式 —— 在塑造生物体方面起着至关重要的作用。操纵这些信号提供了一种控制生物形态和功能的强大方法。
  • “活体机器”: 我们已经在通过重新排列现有细胞并利用其固有的自组织能力来创造“活体机器”—— 就像异种机器人和人造机器人。
  • 合成生物学: 这是*合成生物学*的一个关键研究领域 —— 新生物系统的设计和构建。
  • 自下而上 vs. 自上而下:
    • 自下而上: 试图从头开始构建生命,从单个分子开始(极其困难)。
    • 自上而下: 使用现有细胞并操纵其生物电信号以创建新的形式和功能(在短期内更可行)。
  • “解剖编译器”愿景: 长期目标是开发类似于“解剖编译器”的东西 —— 一个可以将所需的生物结构转化为一组生物电指令的系统。
  • 伦理考量: 创造或操纵生命引发了关于我们的责任和潜在后果的深刻伦理问题。
  • 部分、合成的“生命” vs“生命”: 讨论通常围绕如何“定义”甚至区分生物电作为研究的一部分。
  • 超越结构、组织、行为: 还存在超越结构和“行为”的关键哲学概念,即意识/认知。

重新定义“生命”和“人工”:我们指的是什么?

“我们可以用生物电创造人造生命吗?”这个问题立即迫使我们面对一些基本问题:我们所说的“生命”是什么意思?我们所说的“人工”是什么意思?

传统上,我们将“生物”(生长、繁殖和适应的生物体)和“非生物”(岩石、机器等)区分开来。但是这条线越来越模糊,特别是当我们更多地了解生物组织的基本原理时。

我们是在谈论*完全从头开始*创造生命 —— 从单个分子构建一个细胞吗?这是一项极具挑战性的任务,我们离实现它还有很长的路要走。或者我们是在谈论更微妙的东西 —— 获取现有的生物成分(细胞)并重新排列它们,操纵它们的通讯,以创造出*新的*和*功能性*的东西?


不是弗兰肯斯坦:用生物学构建,而不是身体部位

重要的是要消除“弗兰肯斯坦”的形象 —— 将身体部位拼凑在一起以创造一个怪物。那*不是*我们在这里谈论的。我们谈论的是理解和利用生物组织的*基本原理*,而不仅仅是组装预先存在的部件。

Michael Levin 在他的各种出版物、在线讲座中考虑了这些含义,并非常仔细地定义了关于区别,关于潜在的属性/能力 —— 当细胞不再受到通常的限制时,“带出”令人惊讶的和独特的行为或结果;做那些前沿研究绝不是“扮演上帝”。他对自然界中可能性的概念具有强大而深远的应用。做这项研究代表了一种搜索,发现了这种内在的现有能力(在内部,而不是设计)。这些包括关于以下概念的讨论:

  • 潜在潜力,
  • 形态空间。

生物电:生物形态的指挥家

正如我们在本系列中探讨的那样,*生物电* —— 细胞和组织之间的电压模式 —— 在塑造生物体方面起着至关重要的作用。这些生物电信号充当一种“软件”,控制“硬件”(基因和蛋白质)的使用方式,指导发育、再生和其他过程。

操纵生物电信号提供了一种*控制*生物形态和功能的强大方法。这就像重写告诉细胞如何行为以及如何组织自己的指令。


“活体机器”:我们已经在做了(某种程度上)

从某种意义上说,我们*已经*在使用生物电创造“人造生命”—— 或者至少是“人造生命系统”。考虑以下示例:

  • 异种机器人: 这些微小的、自推进的“机器”是由青蛙胚胎细胞产生的。它们没有经过基因改造;它们的新行为来自重新排列细胞并利用其固有的自组织能力。
  • 人造机器人: 类似于异种机器人,但由*人类*气管细胞制成。这些结构可以四处移动,甚至可以在*体外*促进受损神经组织的修复。

科学家们一直在发现前所未见的证据,证明结构构建可以扩展到生物学的通常预期之外,通过创造异种机器人(自组装的青蛙皮肤组织)、人造机器人(解决迷宫的人类呼吸组织簇)。

这些不是传统意义上的“生命”—— 它们不是自我复制的生物体,不会世代进化。但它们是表现出新的、设计的行为的*生命系统*。它们是由生物成分构建的“机器”,它们的行为至少部分受生物电控制。它代表了一个答案,即“创造的生命形式”的问题已经在这里,而不是遥远的未来愿景 —— 至少在早期概念证明阶段。


合成生物学:自下而上和自上而下设计生命

这些“活体机器”是*合成生物学*的例子 —— 一个旨在设计和构建新生物系统的领域,通常通过将工程原理与生物成分相结合来实现。

合成生物学有两种主要方法:

  • 自下而上: 试图从头开始构建生命,从单个分子(如 DNA 和蛋白质)开始,并将它们组装成越来越复杂的结构。这是一种极其困难的方法,我们仍处于非常早期的阶段。
  • 自上而下: 采用现有的生物系统(如细胞)并修改它们、重新排列它们或控制它们的通讯以创建新的形式和功能。这是用于创建异种机器人和人造机器人的方法,事实证明,这在短期内更可行。

Levin 博士和 Bongard 博士的研究团队证明了一些证据,表明现有系统表现出那些“意想不到的结构/组织形成”,这是一种新方法 —— 超越基因、化学物质、自下而上的排列方法。


“解剖编译器”:编程生物形态

该领域的长期愿景是开发类似于“解剖编译器”的东西 —— 一个可以将所需的生物结构(例如,特定器官、具有特定功能的组织)转化为一组生物电指令的系统,这些指令将指导细胞构建它。生物电和电学研究表明了一种超越典型信号(相对有限)的可能机制 。

我们不是在组合详细的构建规范和顺序,就像积木一样。这意味着存在可能的自上而下的方法:就像一个人指定“长出新的手”。

这仍然是一个遥远的目标,但对异种机器人、人造机器人和其他模型系统的研究正在提供关于生物电如何控制生物形态以及我们如何操纵它的重要见解。


伦理考量:玩弄生命

即使在这个相对简单的水平上,创造或操纵生命的能力也提出了深刻的伦理问题。有些人认为这个话题如果做得太远,可能会太危险:

  • 如果我们已经具备了大规模和极端复杂性/多样性(不是现在异种机器人的基本形式)构建生物部件、组织、结构(通过生物电手段、化学物质或未来的“编译器”)的能力:如果它们变得有害或成为生物问题的根源,该怎么办。
  • 合成心智/生命有意识:新的“排列”的“人造生命”能否具有“思考”的能力?还是受苦?“感受痛苦”?根本没有适当的意识、感觉、理解来定义“意识”。莱文博士谈到并解释说,没有真正的框架;科学只显示了细胞和系统如何被控制并表现出认知特征。其余的(痛苦、意识)是未知的。它涉及许多未知数。
  • 意外后果。许多科学家都感到担忧,并(包括与莱文博士一起)在公共层面进行持续的讨论和谈话,即通过修补/实验:
    • 还有什么其他后果。它们如何进化或反应,可能存在什么风险。
    • 如何防范失控和“合成生物学”可能对生命和地球现有生物/星球造成的潜在生存/危险问题。

我们需要考虑:

  • 我们的责任: 我们对这些新形式的生命有什么责任,即使它们是“人造的”?它们有任何道德地位吗?
  • 潜在风险: 创造或操纵生命有哪些潜在风险?我们会不小心创造出有害或危险的东西吗?
  • 意外后果: 即使我们的意图是好的,我们的干预是否会产生意想不到的负面后果?
  • 监管:需要什么样的框架来避免潜在的灾难。这些新的研究领域、能力需要多少监测和保障。
  • 实然-应然: 即使科学有知识和“方法”:这种能力如何转化为负责任和正确的下一步(我们应该如何对待所有实体)。

这些是复杂的问题,没有简单的答案。但当我们在这个令人兴奋且具有潜在变革性的领域前进时,我们必须努力解决这些问题。

没有简单的“中立选择”。通过行动,人们会改变新的、新兴的科学轨迹(例如意外的感知或可能造成“意外问题”的人造生物,例如缺陷)。什么都不做,这也涉及关键问题 —— 癌症、发育、健康将继续夺走受害者。人类被锁定在这种拥有超越旧有期望和发现的伟大知识的境地(我们不能再“隐藏”在我们自己的学习中);其中一个选项总是会导致某些事情和一种结果。莱文和其他伟大的思想家继续与哲学界讨论关于假设(什么应该和可以指导最佳框架)的想法/方向/伦理,不仅限于生物学和化学。