Assessment of enrichment of human mesenchymal stem cells based on plasma and mitochondrial membrane potentials Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Background and Motivation

  • Human mesenchymal stem cells (hMSCs) are used in therapies for inflammatory and degenerative diseases.
  • However, not all hMSCs are the same – they are heterogeneous, which can lead to inconsistent treatment outcomes.
  • This research explores a new way to sort hMSCs based on their electrical properties to enrich for cells with better healing potential.

Research Goals

  • Develop a method to separate hMSCs into distinct groups using a fluorescent dye (TMRE) that reflects their electrical and ionic states.
  • Determine if the cells with lower or higher TMRE signals (indicating different membrane “charges”) show differences in aging, regeneration, and immune regulation.

Materials and Methods

  • Cell Culture:
    • hMSCs are thawed from cryopreserved bone marrow samples and grown in a nutrient-rich medium.
    • Cells are expanded until they cover 70–85% of the culture surface and then split to continue growing.
  • Fluorescence-Activated Cell Sorting (FACS) with TMRE:
    • TMRE is a fluorescent dye that accumulates in cell membranes based on the cell’s electrical potential, much like a battery indicator showing its charge.
    • Cells are incubated with a low concentration of TMRE to avoid overloading them.
    • Using FACS, cells are sorted into two groups:
      • MSC-DCL: Cells with low TMRE signal (depolarized membranes; akin to a low battery charge).
      • MSC-DCH: Cells with high TMRE signal (hyperpolarized membranes; like a fully charged battery).
  • Co-culture with Macrophages:
    • Macrophages (immune cells) are cultured and activated using inflammatory agents.
    • Both groups of hMSCs are co-cultured with these activated macrophages to assess their effect on immune cell behavior.
  • Gene Expression Analysis:
    • RNA is extracted from the cells to measure the levels of key genes.
    • Markers for senescence (aging), stemness (regenerative potential), autophagy (cellular recycling), and immunomodulation (inflammation control) are analyzed.
    • Analyses are performed immediately after sorting (0 hours) and after 24 hours in culture.

Results: Enrichment Strategy and Immediate Findings

  • Sorting Outcome:
    • The FACS procedure successfully separated the hMSCs into two distinct groups based on TMRE intensity.
    • MSC-DCH cells had a TMRE signal roughly 15 times higher than MSC-DCL cells and were larger and more complex (as seen by forward and side scatter measurements).
    • The yield (number of cells collected) was higher for MSC-DCH, though both groups maintained similar cell viability.
  • Immediate Gene Expression (0 Hours Post-Sorting):
    • MSC-DCL (low TMRE) showed:
      • Lower levels of p21, a marker of cell aging (senescence), indicating they are “younger”.
      • Higher levels of DNMT1, which helps maintain the cell’s ability to renew itself (stemness).
      • Increased expression of ULK1, suggesting more active autophagy (the cell’s recycling process).
    • MSC-DCH (high TMRE) generally showed opposite trends for these markers.

Results: 24-Hour Post-Sorting Findings

  • Gene Expression Changes After 24 Hours:
    • Some senescence markers became similar between the groups, but MSC-DCL maintained lower levels of GLB1 and FUCA1, further suggesting reduced aging.
    • Stemness Markers:
      • CD44 levels were similar between the groups.
      • CD105 was lower in MSC-DCL, indicating a shift in cell characteristics over time.
    • Autophagy Markers:
      • MSC-DCL increased expression of p62, ULK1, and LC3B, reinforcing that these cells have a stronger self-cleaning and repair mechanism.
    • Immunomodulatory Markers:
      • After 24 hours, MSC-DCL showed higher levels of HO-1 and IL-6, which are linked to anti-inflammatory effects and improved healing.

Results: Functional Effects in Co-Culture with Macrophages

  • Co-Culture Experiment:
    • Activated macrophages were co-cultured with MSC-DCL and MSC-DCH cells.
    • Macrophages exposed to MSC-DCL expressed significantly lower levels of several pro-inflammatory markers (both M1 and M2 types), indicating a stronger immunosuppressive effect.
  • Interpretation:
    • MSC-DCL cells appear to better suppress inflammation, which is beneficial for therapies aiming to control overactive immune responses.
    • Higher HO-1 expression in MSC-DCL may be a key factor in this anti-inflammatory capability.

Discussion and Interpretation

  • Key Findings:
    • Sorting hMSCs by their electrical properties using TMRE creates two distinct populations.
    • Cells with low TMRE intensity (MSC-DCL) exhibit markers indicating reduced aging, enhanced self-repair (autophagy), and improved immune regulation.
    • These traits suggest that MSC-DCL cells could be more effective in therapeutic applications.
  • Metaphors and Analogies:
    • Imagine TMRE as a battery tester – cells with low readings are like batteries that are not fully charged but may be more “youthful” and ready for a recharge.
    • FACS sorting works like a high-tech sieve that separates objects (cells) by color and size, making the groups more uniform.
    • Autophagy is the cell’s own recycling center, cleaning up damaged parts to keep the cell functioning optimally.
  • Implications:
    • This enrichment strategy could improve stem cell therapies by selecting cells that are less aged and have a better capacity for repair and immune regulation.
    • Further studies may refine these methods with additional protein and metabolic analyses.

Conclusions

  • hMSCs can be enriched into two distinct groups based on their electrical properties as measured by TMRE staining.
  • Cells with low TMRE intensity (MSC-DCL) show lower signs of aging, stronger autophagy, and enhanced immunosuppressive potential.
  • These findings support the concept of selecting specific stem cell subpopulations to improve the effectiveness of cell-based therapies.

Glossary of Key Terms

  • hMSCs: Human mesenchymal stem cells that can differentiate into various cell types to help repair tissues.
  • TMRE: A fluorescent dye that indicates the electrical potential of cell membranes, similar to checking a battery’s charge.
  • FACS: A technique (Fluorescence-Activated Cell Sorting) used to separate cells based on size, fluorescence, and other properties.
  • Membrane Potential: The voltage difference across a cell membrane, analogous to the charge difference in a battery.
  • Senescence: The process of cell aging, where cells lose their ability to function optimally.
  • Autophagy: The cell’s process of self-cleaning and recycling damaged components.
  • Stemness: The potential of a stem cell to differentiate into multiple cell types.
  • Immunomodulation: The ability to regulate or modify the immune response, often reducing inflammation.

观察与动机 (背景)

  • 人类间充质干细胞 (hMSCs) 被用于治疗多种炎症和退行性疾病。
  • 由于细胞群体存在异质性,hMSCs 疗法的效果可能会有所不同。
  • 本研究探索了一种基于细胞电学和离子特性富集 hMSCs 的新方法,以选出具有更好修复潜力的细胞。

研究目标

  • 开发一种利用荧光染料 TMRE 根据细胞电特性对 hMSCs 进行分选的方法。
  • 探讨低 TMRE 信号和高 TMRE 信号细胞是否在衰老、干性及免疫调节方面存在差异。

材料与方法

  • 细胞培养:
    • 从人骨髓中获得的 hMSCs 被解冻并在营养丰富的培养基中扩增。
    • 细胞生长至覆盖面积 70–85% 后进行分裂,以便进一步扩增。
  • 利用 FACS 和 TMRE 进行分选:
    • TMRE 是一种荧光染料,根据细胞膜电位显示不同亮度,就像检测电池电量一样。
    • 细胞在低浓度 TMRE 下孵育,避免染料过量影响细胞。
    • 使用 FACS 技术,将细胞分为两个群体:
      • MSC-DCL:TMRE 信号较低的细胞(膜去极化,类似于电池电量低)。
      • MSC-DCH:TMRE 信号较高的细胞(膜超极化,类似于电池充满电)。
  • 与巨噬细胞共培养:
    • 培养并激活巨噬细胞(免疫细胞),以模拟炎症状态。
    • 将两组 hMSCs 与激活的巨噬细胞共培养,评估其对免疫细胞的调控作用。
  • 基因表达分析:
    • 提取细胞 RNA,检测关键基因的表达水平。
    • 测定与衰老、干性、自噬和免疫调节相关的标志物。
    • 分析分别在分选后 0 小时和 24 小时的表达变化。

结果:分选策略与即时发现

  • 分选结果:
    • 利用 FACS 技术,成功根据 TMRE 强度将 hMSCs 分为两个不同的群体。
    • MSC-DCH 组的 TMRE 信号大约比 MSC-DCL 组高 15 倍,同时细胞尺寸和复杂性也更大。
    • 尽管两组细胞的存活率相似,MSC-DCH 的回收率较高。
  • 即时基因表达 (分选后 0 小时):
    • MSC-DCL(低 TMRE)显示出:
      • 较低的 p21 表达,提示细胞衰老程度较低。
      • 较高的 DNMT1 表达,有助于维持细胞自我更新能力(干性)。
      • 自噬标志物 ULK1 表达增加,说明细胞自我回收机制较为活跃。
    • MSC-DCH 组则表现出相反的趋势。

结果:24 小时后的发现

  • 24 小时后的基因表达变化:
    • 部分衰老标志物在两组间趋于一致,但 MSC-DCL 组的 GLB1 和 FUCA1 水平仍较低,表明其衰老程度较低。
    • 干性标志物:
      • CD44 表达在两组间相似。
      • CD105 在 MSC-DCL 组中表达降低,显示出细胞特性随时间发生转变。
    • 自噬标志物:
      • MSC-DCL 组在 24 小时时 p62、ULK1 和 LC3B 的表达增加,进一步证明其自我清理和修复能力较强。
    • 免疫调节标志物:
      • 24 小时后,MSC-DCL 组表现出 HO-1 和 IL-6 的表达升高,这与抗炎和促进愈合有关。

结果:与巨噬细胞共培养的功能效应

  • 共培养实验:
    • 激活的巨噬细胞与 MSC-DCL 和 MSC-DCH 细胞共同培养。
    • 与 MSC-DCL 共培养后,巨噬细胞中多种促炎标志物的表达显著降低。
  • 解读:
    • MSC-DCL 细胞表现出更强的抑制炎症能力,这对需要控制免疫反应的治疗非常有利。
    • 较高的 HO-1 表达可能是 MSC-DCL 抑制炎症作用的关键因素。

讨论与解读

  • 主要发现:
    • 利用 TMRE 分选技术可以将 hMSCs 分离为两个具有不同电学特性的群体。
    • 低 TMRE 信号的 MSC-DCL 细胞表现出较低的衰老迹象和更强的自噬能力。
    • 这些细胞在免疫调节方面也表现出更大的潜力。
  • 比喻与类比:
    • 把 TMRE 看作电池电量指示器;低 TMRE 的细胞就像电量不足但更“年轻”的电池,具有更高的再生潜力。
    • FACS 分选就像用筛子分拣不同颜色和大小的弹珠,使每一组更加均一。
    • 自噬类似于细胞的回收中心,负责清理和再利用废弃物,确保细胞高效运行。
  • 意义:
    • 这种富集策略有望通过选出衰老较少、再生能力更强的细胞,从而改善细胞治疗的效果。
    • 未来的研究将进一步完善这一技术,并结合蛋白和代谢分析以深入理解其机制。

结论

  • 研究证明,可以通过 TMRE 染色将 hMSCs 分选为两种不同的群体。
  • 低 TMRE 信号的 MSC-DCL 细胞表现出较低的衰老特性、更强的自噬能力以及更佳的免疫抑制潜力。
  • 这些结果支持通过选择特定干细胞亚群来提高细胞治疗效果的理念。

关键术语词汇表

  • hMSCs: 人类间充质干细胞,具有分化为多种细胞类型和促进组织修复的潜力。
  • TMRE: 一种荧光染料,用于检测细胞膜电位,类似于检测电池电量。
  • FACS: 荧光激活细胞分选技术,根据细胞大小、荧光等特性对细胞进行分选。
  • 膜电位: 细胞膜两侧的电压差,类似于电池正负极之间的电压。
  • 衰老 (Senescence): 细胞老化过程,老化细胞功能下降。
  • 自噬 (Autophagy): 细胞自我清理和回收废弃物的机制,就像细胞内部的回收站。
  • 干性 (Stemness): 指干细胞具备分化为多种细胞类型的能力。
  • 免疫调节 (Immunomodulation): 调节免疫系统反应,减少炎症或促进修复的能力。