A free energy principle for generic quantum systems Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction: What is the Free Energy Principle?

  • The Free Energy Principle (FEP) suggests that systems try to minimize prediction error or “surprise”.
  • This principle is based on Bayesian inference – updating beliefs based on new information.

Quantum Extension of the FEP

  • This paper extends the FEP to generic quantum systems.
  • Quantum systems are described without a fixed spacetime background, viewing them as active observers.
  • They update their “beliefs” through measurement, much like we adjust our expectations in everyday life.

Key Concepts and Definitions

  • Variational Free Energy (VFE): An upper bound on “surprise”, measuring how unexpected a state is compared to a model.
  • Surprise (Surprisal): A measure of how unexpected an event is; lower surprise means better prediction.
  • Bayesian Prediction Error: The difference between what is expected and what is observed.
  • Quantum Reference Frames (QRFs): Systems that provide a measurement basis – similar to choosing a coordinate system for understanding observations.
  • Unitarity: A fundamental principle of quantum mechanics ensuring that the total probability (and thus information) is conserved over time.
  • Markov Blankets (MB): Conceptual boundaries that separate a system’s internal states from its environment, much like a protective shell.

Reformulating the FEP in Quantum Terms

  • The paper redefines the FEP using quantum information theory concepts.
  • It removes the need for a fixed spacetime backdrop and objective randomness; uncertainty arises from the process of quantum measurement.
  • Interactions between systems are viewed as exchanges of information through a “holographic screen”—a conceptual boundary where information is encoded.
  • Agents (or observers) are defined by their ability to break symmetry at this boundary using QRFs, effectively “choosing” how to measure the world.

Measurement, Memory, and System Identification

  • Systems record observations in a step-by-step process, similar to following a detailed recipe.
  • Coarse-graining: Simplifying complex data to capture the essential behavior over time, much like summarizing detailed notes.
  • Measurements are made using operators that allow the system to compare its predictions with observed outcomes.
  • This iterative process helps minimize prediction errors over repeated cycles.

Noncommutativity and Context-Switching

  • In quantum mechanics, some measurements do not commute, meaning the order in which they are performed matters.
  • This leads to context-switching, where changing the measurement basis can temporarily increase prediction error.
  • Aligning reference frames (QRFs) between interacting systems minimizes this error—similar to synchronizing watches for coordinated action.

Asymptotic Behavior: Entanglement and Unitarity

  • As prediction errors are minimized over time, the observer’s internal model becomes closely aligned with the actual system state.
  • This alignment results in entanglement, where systems share information completely.
  • Thus, in the long run, the FEP becomes equivalent to the Principle of Unitarity – a core rule of quantum mechanics that ensures information conservation.

Implications for Biological Cognition

  • The framework suggests that biological systems may use quantum coherence as a resource for efficient information processing.
  • Living organisms might balance classical communication (clear, distinct signals) with quantum entanglement (deep, shared information).
  • This balance could help explain efficient cellular processes and even aspects of consciousness.

Discussion and Predictions

  • The paper unifies quantum mechanics and the FEP, indicating that all quantum systems naturally perform active inference.
  • It predicts that even at the cellular or organismal level, quantum effects could play a significant role in cognition.
  • Future experimental work is needed to test these predictions in biological and artificial systems.

Conclusion

  • The FEP for quantum systems shows that minimizing prediction errors leads to entanglement and aligns with the principle of unitarity.
  • This work provides a foundation for viewing all physical systems as active agents that continuously update their internal models.
  • It bridges ideas from quantum physics, information theory, and biology to explain how systems maintain their identity.

引言:自由能原理是什么?

  • 自由能原理(FEP)认为系统会尽量最小化预测误差或“惊讶度”。
  • 这一原理基于贝叶斯推理,即根据新信息不断更新“信念”。

自由能原理在量子领域的扩展

  • 本文将自由能原理扩展到通用的量子系统中。
  • 在这种描述中,量子系统不依赖固定的时空背景,而是被视为主动的观察者。
  • 它们通过测量不断更新自己的“信念”,类似于我们在日常生活中调整预期。

关键概念和定义

  • 变分自由能(VFE): 对“惊讶度”的上界,用来衡量状态与模型之间的匹配程度。
  • 惊讶度: 衡量事件发生的意外程度;惊讶度越低,表示预测越准确。
  • 贝叶斯预测误差: 期望结果与实际观测之间的差距,即预测误差。
  • 量子参考系(QRFs): 为测量提供基准的系统,类似于在空间中选择坐标系,但用于量子状态。
  • 幺正性: 量子力学中的基本原则,确保总概率(信息)守恒;在此保证信息不会丢失。
  • 马尔可夫毛毯(MB): 将系统内部状态与外部环境分离的“保护屏障”。

用量子语言重新表述自由能原理

  • 论文利用量子信息理论的概念重新构建了自由能原理。
  • 它不再依赖固定的时空背景和固有随机性,而是不确定性源于量子测量中的信息交换。
  • 系统间的相互作用被视为通过“全息屏”(一种概念边界)进行信息传递。
  • “代理”或观察者通过使用量子参考系打破边界对称性,从而决定如何进行测量。

测量、记忆与系统识别

  • 系统像烹饪一样,按照详细步骤记录观测结果(记忆)。
  • 粗粒化: 简化复杂信息以捕捉长时间内的本质行为,就像总结长篇笔记中的关键点。
  • 通过测量算子比较预测与实际结果,逐步减少预测误差。
  • 这一反复过程帮助系统不断改进其内部模型。

非对易性与情境切换

  • 在量子力学中,有些测量不满足对易性,即测量顺序会影响结果。
  • 这种现象会导致情境切换,如果观察者的参考系不匹配,就会增加预测误差。
  • 论文指出,通过对齐这些参考系,可以最小化误差,就像同步时钟以确保顺畅沟通一样。

渐近行为:纠缠与幺正性

  • 当预测误差趋于零时,观察者的内部模型与实际系统状态趋于一致。
  • 这种一致性会导致系统间的纠缠,即信息的完全共享。
  • 因此,从长远来看,自由能原理与幺正性原理是等价的。

对生物认知的启示

  • 该框架暗示生物系统可能利用量子相干性来实现高效的信息处理。
  • 生物体可能在经典通信(清晰、独立的信号)与量子纠缠(深度共享信息)之间取得平衡。
  • 这种平衡可能解释细胞过程的高效性,甚至与意识的某些方面有关。

讨论与预测

  • 论文统一了量子力学与自由能原理,表明所有量子系统都自然地进行主动推理。
  • 它预测,即使在细胞或有机体层面,量子效应也可能在认知中发挥重要作用。
  • 未来需要通过实验在生物和人工系统中验证这些预测。

结论

  • 对于量子系统,自由能原理表明最小化预测误差会导致纠缠,并与幺正性保持一致。
  • 这项工作为将所有物理系统视为通过主动推理维持自身身份的“代理”提供了理论基础。
  • 它连接了量子物理、信息理论与生物学的思想,帮助解释系统如何维持其独特性。