Is left right asymmetry a form of planar cell polarity Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Overview of LR Asymmetry and PCP (Introduction)

  • Left-right (LR) asymmetry refers to the consistent differences between the left and right sides of an organism (for example, the heart is normally on the left, the liver on the right).
  • Planar cell polarity (PCP) is the coordinated orientation of cells within the plane of a tissue—much like how tiles are laid out evenly on a floor.
  • This paper proposes that LR asymmetry may be established by mechanisms similar to PCP, meaning that the same processes which align cells in a flat sheet might also set up the body’s left–right differences.

Key Observations and Background

  • Consistent LR patterning is critical for correct organ placement; errors can lead to serious birth defects.
  • Traditional models have emphasized the role of motile cilia (tiny, hair-like structures) generating leftward fluid flow to break symmetry.
  • However, many organisms develop LR asymmetry without relying on cilia, suggesting alternative intracellular mechanisms.

Planar Cell Polarity (PCP) and Its Role

  • PCP organizes cells so that they are uniformly oriented across the tissue, similar to arranging arrows all pointing in one direction.
  • It involves key proteins (such as Frizzled and Dishevelled) that become unevenly distributed within the cell.
  • The paper suggests that these PCP mechanisms can amplify a small initial asymmetry and spread LR information throughout a developing embryo.

How LR Asymmetry May Be Established (Step-by-Step)

  • Step 1: Breaking Symmetry
    • An intracellular “starter” cue—possibly a chiral (handed) component of the cytoskeleton—provides the first directional hint.
    • This is like adding the first ingredient in a recipe that sets the overall flavor.
  • Step 2: Amplification via PCP
    • Cells use PCP mechanisms to align their internal components and communicate their directional information to neighboring cells.
    • This is similar to how a drop of dye spreads evenly through a glass of water.
  • Step 3: Transmission of LR Signals
    • Physiological signals—such as ion fluxes (movements of charged particles)—help establish clear differences between the left and right sides.
    • Imagine electrical currents running along a circuit board, guiding the flow of information.
  • Step 4: Organogenesis (Organ Formation)
    • Asymmetric gene expression then directs the formation of organs on the left or right side.
    • This is akin to following a detailed recipe where slight variations yield two distinct but complementary dishes.

Intracellular Mechanisms and the Role of the Cytoskeleton

  • The cytoskeleton is a network of fibers that gives cells their shape and aids in moving materials inside the cell.
  • Key components include microtubules and actin filaments, which can have an inherent “handedness” or chirality.
  • A microtubule-organizing center (MTOC) or a basal body (the structure at the base of cilia) may function as an internal compass to orient the LR axis.
  • This process is similar to using a built-in compass to line up all parts of a machine.

Evidence Supporting the Model

  • Studies in frog (Xenopus) embryos show early asymmetries in protein localization, suggesting intracellular cues are at work.
  • Research in fruit flies (Drosophila) reveals that key PCP components are essential for aligning cell orientation.
  • Experiments with human neutrophil-like cells (HL60) indicate that even individual cells exhibit a leftward bias in movement.
  • Together, these findings support the idea that cells can establish a left–right axis internally, even before external structures such as cilia come into play.

Ciliary Versus Intracellular Models

  • Traditional ciliary models propose that the beating of cilia creates a leftward fluid flow to break symmetry.
  • The intracellular model argues that internal cell structures, especially the cytoskeleton, set up LR asymmetry at a very early stage.
  • This model can explain LR asymmetry in species that lack motile cilia and accounts for mirror-image phenomena seen in some twins.
  • Think of it as choosing between using an external GPS (cilia-generated flow) and an internal compass (cellular chirality) to navigate.

Predictions and Implications of the Model

  • If LR asymmetry is established intracellularly, early cell divisions (as seen in monozygotic twins) might show mirror-image patterns (often called book-ending).
  • PCP components might also play a direct role in LR patterning, so mutations affecting these proteins could lead to both PCP and LR defects.
  • The model predicts that manipulating intracellular transport systems should affect both the alignment of cells (PCP) and the establishment of left-right differences.
  • This unified approach may help explain how large fields of cells maintain a coordinated orientation.

Limitations and Future Experimental Tests

  • Many molecular details remain unclear and require further investigation.
  • It is not yet definitively proven that core PCP proteins directly influence LR asymmetry in all organisms.
  • Future experiments need to identify the exact intracellular factors that serve as the initial cue for LR orientation.
  • Researchers can test these predictions by altering genes related to cytoskeletal organization and observing the effects on both PCP and LR patterning.

Conclusion

  • The paper proposes a novel model in which left-right asymmetry is established by mechanisms similar to planar cell polarity.
  • This intracellular approach may operate very early in development and is supported by evidence from multiple species.
  • Understanding these processes can provide insights into developmental disorders and congenital defects.
  • The study bridges traditional ciliary models and intracellular signaling, offering a comprehensive view of how body asymmetry is generated.

左右不对称与平面细胞极性 (引言)

  • 左右不对称指的是生物体两侧始终存在的固定差异(例如,心脏通常位于左侧,肝脏位于右侧)。
  • 平面细胞极性(PCP)是指细胞在组织平面内统一定向,就像瓷砖整齐排列一样。
  • 本文提出,左右不对称可能通过与PCP类似的机制建立,即使排列细胞的同一机制也能决定身体的左右差异。

主要观察和背景

  • 左右模式对器官正确定位至关重要;错误会导致严重的先天性缺陷。
  • 传统模型强调运动纤毛产生的左向流动来打破对称,但并非所有生物都依赖纤毛。
  • 一些物种即使没有纤毛,也能表现出左右不对称,这提示存在其他细胞内机制。

平面细胞极性 (PCP) 及其作用

  • PCP帮助细胞在组织中统一定向,就像把箭头都指向同一个方向一样。
  • 这一过程涉及关键蛋白(例如Frizzled和Dishevelled)在细胞内的不均匀分布。
  • 作者认为,PCP机制可以放大最初微小的不对称信号,并在胚胎中传播左右信息。

左右不对称的建立过程(分步说明)

  • 第一步:打破对称
    • 某些细胞内结构(例如具有手性的细胞骨架部分)可能提供最初的方向性信号。
    • 这就像烹饪时加入的第一种调料,决定了整个菜谱的走向。
  • 第二步:通过PCP放大信号
    • 细胞利用PCP机制排列其内部结构,并将方向性信息传递给相邻细胞。
    • 类似于在一杯水中滴入一滴色素,逐渐使整杯水染色。
  • 第三步:传递左右信号
    • 离子流等生理信号有助于在左右两侧建立明显差异。
    • 可以将其比作电流在电路板上传递信息。
  • 第四步:器官生成
    • 不对称的基因表达指导左右侧器官的形成。
    • 就像根据详细食谱分别制作出略有不同的两款蛋糕。

细胞内机制与细胞骨架的作用

  • 细胞骨架是由纤维组成的网络,赋予细胞形状并帮助运输内部物质。
  • 主要成分包括微管和肌动蛋白,这些结构本身具有“手性”或左右不对称性。
  • 微管组织中心(MTOC)或基底体(位于纤毛基部的结构)可能作为内部指南针,帮助确定左右轴。
  • 这一过程类似于细胞内部使用指南针对齐所有部件。

支持该模型的证据

  • 在蛙类胚胎中观察到蛋白质定位的早期不对称现象,提示细胞内线索已在发挥作用。
  • 果蝇的研究显示,PCP关键组分对细胞定向至关重要。
  • 在HL60类中性粒细胞实验中,即使单个细胞也显示出向左运动的偏好。
  • 这些发现共同支持细胞在外部结构(如纤毛)出现之前就能建立左右轴的观点。

纤毛模型与细胞内模型的比较

  • 传统模型认为纤毛的摆动产生左向流动来打破对称。
  • 细胞内模型则主张细胞内部结构(如细胞骨架)在发育早期就建立左右不对称。
  • 这种模型可以解释没有运动纤毛的物种以及双胞胎中出现的镜像现象。
  • 可比作两种导航方式:一种依靠外部指南针(纤毛流动),另一种依靠内部指南针(细胞骨架手性)。

模型的预测和意义

  • 如果左右不对称是由细胞内部建立的,则早期细胞分裂(如单卵双胞胎)可能出现镜像排列(书本式镜像现象)。
  • PCP组分可能也直接参与左右不对称,因此这些基因的突变可能同时导致PCP和左右缺陷。
  • 模型预测,通过操控细胞内运输过程应会同时影响细胞平面极性和左右不对称。
  • 这一统一的观点有助于解释大范围细胞如何协调一致地定向。

模型的局限性与未来实验测试

  • 许多分子机制的细节仍不清楚,仍需进一步研究验证。
  • 目前尚未完全证明所有物种中核心PCP蛋白对左右不对称具有直接影响。
  • 未来实验需要明确哪些细胞内因子作为左右轴的初始信号。
  • 研究者可以通过改变与细胞骨架相关的基因来观察PCP和左右不对称的变化,从而测试模型预测。

结论

  • 本文提出了一种新模型,认为左右不对称的建立与平面细胞极性具有相似的机制。
  • 这种细胞内机制可能在胚胎早期就开始发挥作用,并得到了多种生物的证据支持。
  • 深入理解这些过程有助于揭示发育异常和先天缺陷的根本原因。
  • 该研究将传统纤毛模型与细胞内信号机制相结合,为认识体内左右不对称的形成提供了一个全面的视角。