Perspectives and open problems in the early phases of left–right patterning Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What Is Left-Right (LR) Patterning?

  • LR patterning refers to the process by which embryos develop asymmetry in internal organs (e.g., the heart is always on the left side in humans, not randomly placed).
  • Despite symmetry in the external body plan, internal organs are placed asymmetrically within the body.
  • This process is crucial for proper organ function and placement, and errors can result in serious birth defects.

Key Phases of Left-Right Patterning

  • The first step involves defining the LR axis relative to the body, ensuring that one side is consistently different from the other.
  • The second phase includes asymmetric gene expression, with specific genes being activated on the left side and not on the right side of the body.
  • Finally, the third phase involves organ formation, where cells and tissues on each side of the midline undergo differential movement, growth, and adhesion to create asymmetry.

What Happens When LR Patterning Fails?

  • If the LR patterning process goes wrong, organs might be placed randomly or in mirror-image configurations. This condition is known as heterotaxia.
  • For example, people might have a midline heart or multiple spleens, which can cause serious health issues.

Key Mechanisms Behind LR Patterning

  • The initial asymmetry in the LR axis might come from a physical structure within cells, such as the cytoskeleton, which organizes internal components and determines their orientation.
  • Recent studies suggest that cytoskeletal components, like the microtubule organizing center (MTOC), help set up the basic directionality for LR patterning by organizing microtubules and other cell structures.
  • In early development, the arrangement of proteins and ion transporters in cells is crucial for establishing left-right asymmetry.

How Does the Midline of the Body Form?

  • The midline is an imaginary line that divides the left and right sides of the body. It plays an important role in controlling the direction of asymmetric gene expression.
  • Before asymmetric gene expression begins, the midline helps prevent the mixing of left and right signals, maintaining clear directional cues for the embryo.
  • In some animals, such as frogs, the midline can be traced back to specific structures that organize early development.

What Are the Major Open Questions in LR Patterning?

  • What is the first event that sets the left-right orientation? Is it driven by a specific molecule or structure within cells?
  • How do cells communicate their position relative to the midline and maintain a consistent asymmetry across large fields of cells?
  • How conserved are these mechanisms across different species? Do all organisms follow similar steps in LR patterning?

Recent Discoveries and Insights

  • In some studies, cells have been shown to orient themselves in a consistent left-right direction even without cilia, a structure previously thought to be essential for LR patterning.
  • New findings suggest that cytoskeletal organization and ion flow may be the key to creating the left-right axis before cilia or other structures play a role.
  • In some animals, like the Xenopus (frog) embryo, asymmetry can be traced back to biased cytoskeletal structures that help orient the embryo’s development.

How Do Cilia Play a Role in LR Patterning?

  • Cilia, tiny hair-like structures on cells, are important for generating fluid flow, which could influence the LR patterning by creating asymmetrical signals.
  • However, research has shown that cilia are not always required to initiate the left-right asymmetry, suggesting that other mechanisms, like intracellular transport, may also play a significant role.

Planar Cell Polarity (PCP) and LR Patterning

  • PCP is the process by which cells are oriented in a coordinated way within a tissue. This mechanism is crucial for organizing cells along the LR axis and for ensuring consistent patterning across large fields of cells.
  • PCP-related pathways are conserved across many species, and they can help translate local cellular asymmetries into large-scale organ placement, ensuring that the entire body’s LR axis is aligned correctly.

How Are LR Mechanisms Conserved Across Species?

  • Despite the diversity of animal species and developmental processes, many of the basic mechanisms of LR patterning are conserved across phyla.
  • In particular, the interaction between cytoskeletal organization, ion gradients, and cell polarization is fundamental to LR patterning, and these processes are found in both vertebrates and invertebrates.

What Are the Next Steps for LR Patterning Research?

  • Future research will focus on understanding the exact molecular mechanisms that define the midline early in development.
  • There is also a need to study how different species use slightly different timing or mechanisms to set up the LR axis, and whether these differences are related to the species’ body plan or architecture.
  • Finally, new model systems will help explore how subtle features of LR patterning, like hair whorls or handedness, arise and how they are linked to broader biological processes.

观察到的左右不对称模式 (引言)

  • 左右不对称模式指的是胚胎发育过程中,内脏器官(如心脏总是在左侧而不是随机放置)形成不对称的过程。
  • 尽管外部身体是对称的,但内脏器官的位置是非对称的。
  • 这个过程对器官的正确功能和位置非常重要,如果出错,可能会导致严重的出生缺陷。

左右不对称模式的关键阶段

  • 第一步涉及确定左右(LR)轴的方向,使一侧与另一侧不同。
  • 第二阶段包括非对称基因表达,特定的基因只在左侧激活,而右侧没有。
  • 最后,第三阶段涉及器官形成,其中细胞和组织在中线两侧发生不同的运动、增长和粘附,以创建不对称性。

当LR模式失败时会发生什么?

  • 如果LR模式过程出错,器官可能会随机放置或形成镜像图像,这种情况被称为异位。
  • 例如,可能会出现中线心脏或多脾症,这会引发严重的健康问题。

LR模式背后的关键机制

  • LR轴的初始不对称性可能来自细胞内的结构,例如细胞骨架,它组织内部成分并确定它们的方向。
  • 最近的研究表明,细胞骨架成分,如微管组织中心(MTOC),帮助设置LR模式的基本方向性,通过组织微管和其他细胞结构。
  • 在早期发育过程中,蛋白质和离子转运蛋白在细胞中的排列对于确定左右不对称性至关重要。

中线是如何形成的?

  • 中线是将身体左右两侧分开的假想线。它在控制不对称基因表达的方向上起着重要作用。
  • 在不对称基因表达开始之前,中线帮助防止左右信号的混合,保持胚胎的清晰方向。
  • 在某些动物中,如青蛙,能够追溯到特定结构的中线,这些结构在早期发育中起到了组织作用。

LR模式中的主要未解之谜

  • 第一个设置左右方向的事件是什么?它是否由细胞内的特定分子或结构驱动?
  • 细胞如何相对于中线传递它们的位置,并在大范围的细胞区域内保持一致的不对称性?
  • 这些机制在不同物种中是如何保守的?所有生物是否遵循相似的步骤进行LR模式化?

最新发现和见解

  • 一些研究表明,即使没有纤毛(细胞上的小毛发状结构),细胞也能在没有纤毛的情况下进行一致的左右定向,纤毛以前被认为是LR模式化的必需结构。
  • 新发现表明,细胞骨架组织和离子流可能是创建LR轴的关键,而不是纤毛或其他结构。
  • 在某些动物(如青蛙胚胎)中,不对称性可以追溯到偏向性的细胞骨架结构,这有助于定向胚胎的发育。

纤毛在LR模式中的作用

  • 纤毛是细胞上的微小毛发状结构,它们通过产生液流来影响LR模式化。
  • 然而,研究表明,纤毛并不是启动LR不对称性所必需的,这表明其他机制,如细胞内的物质运输,也可能在其中起着重要作用。

平面细胞极性(PCP)与LR模式化

  • PCP是细胞在组织中协调排列的过程。这一机制对于在LR轴上组织细胞和确保大范围细胞的协调排列至关重要。
  • PCP相关的通路在许多物种中得到保守,它们可以帮助将局部的细胞不对称性转化为大范围的器官定位,确保整个身体的LR轴正确对齐。

LR模式化机制在物种中的保守性

  • 尽管动物物种和发育过程的多样性,LR模式化的许多基本机制在不同的生物中是保守的。
  • 特别是,细胞骨架组织、离子梯度和细胞极性之间的相互作用是LR模式化的基础,这些过程在脊椎动物和无脊椎动物中都有发现。

LR模式化研究的下一步

  • 未来的研究将重点关注理解中线在发育早期的分子机制。
  • 还需要研究不同物种如何使用稍微不同的时间或机制来建立LR轴,以及这些差异是否与物种的身体结构或体型相关。
  • 最后,新模型系统将有助于探索LR模式中微妙的特征,如发旋或手性,以及它们如何与更广泛的生物过程相联系。