Sleeve for stimulation of tissue regeneration Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What is the Invention? (Background & Purpose)

  • This invention is a regenerative sleeve designed to enclose the wound site of an amputated or injured appendage.
  • It creates a sealed, controlled, and moist environment that promotes tissue regeneration and reduces scar formation.
  • The device combines pharmaceutical treatment (via a treatment fluid) with biophysical stimulation (electrical stimulation) to mimic natural regenerative processes seen in certain animals.
  • It is intended to help trigger cells to re-enter a mitotically active state, ultimately leading to the regrowth of tissues such as bone, muscle, and skin.

Components of the Regenerative Sleeve

  • Tubular Sleeve (Outer Body):
    • A hollow, cylindrical structure that encloses the end of the appendage and wound site.
    • Constructed from a transparent, rigid material to allow monitoring of the wound and maintain a consistent internal volume.
  • Cuff:
    • A hollow cylindrical element that is positioned at one end of the sleeve.
    • Designed to conform to the shape and size of the appendage, ensuring a tight, sealed fit to prevent leakage.
  • Access Port:
    • Located on the outer body, it enables the administration and drainage of treatment fluids.
    • Made of a self-sealing material so that when punctured (e.g., by a syringe), it automatically closes to maintain the sealed environment.
  • Electrical Stimulation Device:
    • Includes a pair of electrodes: an anode and a cathode.
    • The electrodes are connected to a power source that delivers a low-level current (up to around 10 µA) to mimic natural bioelectric signals.
    • This stimulation aids in triggering cellular dedifferentiation and proliferation.
  • Additional Features:
    • An annular seal supports the cuff and helps maintain the sealed closure.
    • The sleeve may incorporate telescoping portions to adjust the wound space volume as regeneration progresses.
    • An optional rigid outer cover can be added to protect the device from external damage or animal tampering.
    • A treatment fluid is housed within the sealed space to chemically stimulate tissue regeneration by altering the ionic properties of the cells.

How the Regenerative Sleeve Works (Step-by-Step)

  • Preparation:
    • The device is pre-selected in the correct size and configuration for the targeted appendage.
    • All components (sleeve, cuff, access port, and electrical device) are assembled and checked for integrity.
  • Application:
    • The sleeve is applied directly to the wound site immediately after amputation or injury.
    • The cuff is adjusted to fit snugly around the appendage, forming a sealed wound space.
  • Fluid Administration:
    • A predetermined treatment fluid is introduced into the wound space through the access port using a syringe.
    • This fluid maintains constant moisture and contains regenerative agents that help control the ionic environment of the cells.
    • The treatment fluid may include substances like porcine urinary bladder matrix (UBM) pepsin digest or specially formulated depolarization/hyperpolarization agents.
  • Electrical Stimulation:
    • An electrical stimulation device is connected so that a low-level current flows from the anode to the cathode.
    • The current helps drive an internal wound stump current and provides guidance cues for cell migration and innervation.
    • This stimulation is applied periodically (for example, on days 0, 1, and 3) or continuously, depending on the treatment protocol.
  • Environmental Control & Adjustments:
    • The sealed design maintains an optimal, hydrated environment for the wound.
    • If needed, a fluid pump may be connected to continuously replenish the treatment fluid.
    • The telescoping design of the sleeve allows for dynamic adjustments in volume as tissue regeneration progresses.
    • An optional protective shroud can be added to prevent tampering, especially in small animal models.

Treatment Fluid and Its Role

  • The treatment fluid is formulated to modulate the ionic properties of the cells at the wound site.
  • It stimulates the cells to become mitotically active (i.e., to start dividing and regenerating tissue).
  • Examples of treatment fluids include:
    • Depolarization compositions (with elevated sodium and potassium levels) that push cells into a regenerative state.
    • Hyperpolarization agents that open ATP-sensitive potassium channels, making the cell interior more negative.
    • Extracellular matrix digests (such as UBM pepsin digest) that provide a physical scaffold and biochemical cues.
  • The fluid may be replaced or used in sequential treatments to match different stages of the regeneration process.
  • A continuous moist environment is critical to support cell proliferation and migration.

Experimental Method and Findings (Animal Study)

  • Study Overview:
    • The device was tested in a murine (mouse) digit amputation model.
    • Mice were divided into two treatment groups: one received a control treatment (neutral pepsin buffer) and the other received a UBM digest treatment.
  • Surgical Procedure:
    • Mice were anesthetized and prepared with sterile techniques under a microscope.
    • Digit amputation was performed at the distal phalange, and the regenerative sleeve was immediately applied to enclose the wound site.
  • Treatment Protocol:
    • Electrical stimulation was administered on specified days (e.g., days 0, 1, and 3) at a current of approximately 6.4 µA for 15 minutes per session.
    • The treatment fluid was injected through the access port; care was taken to avoid air bubbles and ensure a full, moist environment.
  • Outcome Measures:
    • Histological analysis evaluated wound hydration, cell proliferation, new gland formation, and evidence of bone remodeling.
    • Regenerative sleeves using UBM digest with electrical stimulation showed enhanced organization of cells and collagen deposition compared to control treatments.
    • The study demonstrated that a well-hydrated, electrically stimulated environment significantly improves tissue regeneration.
  • Study Conclusion:
    • The regenerative sleeve effectively creates a protective, moist microenvironment that supports tissue regrowth.
    • Electrical stimulation further enhances the regenerative process by mimicking natural bioelectric signals.
    • This method shows promise for application to other types of wounds beyond murine digits.

Key Advantages and Future Applications

  • Provides a closed, controlled, and hydrated environment optimal for tissue regeneration.
  • Integrates pharmaceutical treatment with electrical stimulation for a synergistic regenerative effect.
  • Design is flexible and can be adapted or scaled for various wound sizes, including limbs and organs.
  • Simplifies the surgical process by reducing the number of components and assembly time.
  • Potential applications include limb regeneration, treatment of congenital defects, and repair of traumatic injuries.
  • Supports both temporary and permanent electrical stimulation setups, offering versatility in clinical use.

Summary of Key Points

  • The regenerative sleeve is a novel device that stimulates tissue regeneration by combining a sealed, moist environment with treatment fluid delivery and electrical stimulation.
  • Its components include a tubular sleeve, a conforming cuff, a self-sealing access port, and an electrical stimulation device.
  • The application process involves preparing the device, applying it to the wound immediately post-injury, administering a regenerative treatment fluid, and providing electrical stimulation to activate cell proliferation.
  • Animal studies have demonstrated that this method enhances tissue regeneration, showing improved cell organization, new gland formation, and early signs of bone remodeling.
  • The device’s flexible design and multifunctional approach offer significant potential for future medical applications in various regenerative therapies.

发明简介(背景和目的)

  • 该发明是一种再生袖套,专为包裹截肢或受伤部位的伤口设计。
  • 它创造了一个密封、受控且湿润的环境,有助于组织再生并减少瘢痕形成。
  • 该设备结合了药物处理液和生物电刺激,模拟某些动物自然再生过程,促使细胞恢复分裂活性。
  • 目的在于激活细胞再生,最终实现骨骼、肌肉及皮肤等组织的重建。

再生袖套的组成部分

  • 管状袖套(外壳):
    • 空心圆柱形结构,用于包裹伤口部位。
    • 采用透明且坚硬的材料制成,便于观察伤口且能维持稳定的内腔体积。
  • 袖口:
    • 位于袖套的一端,为空心圆筒形,设计上贴合截肢部位的形状与尺寸。
    • 帮助形成紧密的密封,防止处理液泄漏。
  • 进出液口:
    • 设置在外壳上,允许注入和排出处理液,维持封闭的伤口环境。
    • 采用自封材料,当针头穿刺后能自动闭合,确保密封性。
  • 电刺激装置:
    • 包括阳极和阴极,通过低电流(最高约10微安)来模拟生物电信号。
    • 这种电流有助于激活细胞,使其进入再生状态,并为细胞迁移提供指导信号。
  • 其他功能:
    • 环形密封件支撑袖口,确保密封闭合。
    • 袖套可能采用伸缩设计,以便在再生过程中调整伤口内腔体积。
    • 可选的硬质外盖用于保护设备免受外界损伤或动物干扰。
    • 密封腔内储存的处理液含有促进细胞再生的活性成分,通过调节细胞离子环境发挥作用。

再生袖套的工作原理(步骤解析)

  • 准备阶段:
    • 选择合适尺寸和配置的设备,并检查各部件的完整性。
  • 应用步骤:
    • 在截肢或受伤后立即将袖套应用于伤口处,形成一个密封的伤口空间。
    • 调整袖口,使其紧密贴合受伤部位,确保环境封闭。
  • 处理液注入:
    • 通过进出液口使用注射器将预定的处理液注入伤口空间。
    • 处理液保持伤口持续湿润,并含有调控细胞离子环境及激活细胞分裂的成分。
    • 处理液可能包括尿膀胱基质(UBM)消化液或特定的去极化/超极化调控剂。
  • 电刺激:
    • 连接电刺激装置,使低电流从阳极流向阴极,激活伤口区域细胞。
    • 电刺激可以周期性(如第0、1、3天,每次15分钟)或连续应用,以增强再生效果。
  • 环境控制与调整:
    • 密封设计保证伤口环境始终湿润,预防感染。
    • 必要时可连接液体泵,实现处理液的持续补充。
    • 伸缩设计允许根据再生进程动态调整伤口空间体积。
    • 可加装防护罩以防止动物干扰,特别适用于小动物模型。

处理液及其作用

  • 处理液的主要作用是调控伤口细胞的离子特性,从而激活细胞分裂和再生。
  • 可使用高浓度钠、钾离子的去极化液或ATP敏感钾通道开放剂使细胞内环境改变,促进再生。
  • 例如,尿膀胱基质(UBM)消化液可作为物理支架和生化信号源促进细胞增殖。
  • 处理液可根据再生阶段进行顺序或周期性替换,保持伤口持续湿润,支持细胞增殖与迁移。

实验方法及研究发现(动物研究)

  • 研究概述:
    • 采用鼠足截肢模型测试再生袖套的效果。
    • 研究分为两组:对照组(使用中性缓冲液)和实验组(使用UBM消化液)。
  • 手术过程:
    • 对小鼠进行麻醉和严格的无菌操作,在显微镜下完成数字截肢。
    • 截肢后立即应用再生袖套,将伤口区域密封起来。
  • 治疗方案:
    • 在预定的时间(例如第0、1、3天)对伤口施加电刺激(约6.4微安,15分钟/次)。
    • 通过进出液口注入处理液,确保无气泡形成,维持伤口湿润。
  • 结果评估:
    • 通过组织学分析观察伤口湿润程度、细胞增殖、新腺体形成及骨重塑情况。
    • 实验组(UBM消化液加电刺激)显示出较对照组更好的细胞组织排列、胶原沉积和再生迹象。
    • 研究证明,密封且电刺激的伤口环境显著促进了组织再生。
  • 研究结论:
    • 再生袖套能有效创建一个保护、湿润的微环境,促进伤口组织再生。
    • 电刺激进一步增强了这一过程,通过模拟生物电信号激活细胞。
    • 该方法不仅适用于鼠足,也具备推广到其他伤口再生治疗的潜力。

主要优势与未来应用前景

  • 提供一个封闭、受控且持续湿润的伤口环境,有利于细胞再生。
  • 将药物处理和电刺激相结合,形成协同再生效应。
  • 设计灵活,可根据不同伤口尺寸和类型进行调整和扩展。
  • 简化了手术操作,减少组件组装时间和复杂性。
  • 未来可应用于肢体再生、器官修复以及先天性缺陷的治疗。
  • 适用于临时或长期的电刺激配置,提供多样化的临床应用可能。

关键要点总结

  • 再生袖套是一种新颖设备,通过封闭、湿润的环境及药物与电刺激的综合作用,促进伤口处组织再生。
  • 主要部件包括管状袖套、紧密贴合的袖口、自封进出液口以及电刺激装置。
  • 使用流程包括设备准备、伤口应用、处理液注入和电刺激治疗,步骤清晰如同“烹饪食谱”。
  • 动物实验显示,该方法能显著改善细胞组织排列、新腺体形成及骨重塑,验证了其再生效果。
  • 整体设计多功能且灵活,未来在多种医疗再生领域具有广阔应用前景。