Evolution leads to emergence an analysis of protein interactomes across the tree of life Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What Was Observed? (Introduction)

  • Biological systems are complex and noisy, which makes it hard to understand how they work. The noise comes from random events in biological processes, such as how genes interact and proteins bind.
  • Researchers studied protein-protein interactions (PPIs) in over 1800 species to understand how the noise in these systems changes across evolution.
  • They found that as life evolved, protein networks became more organized at higher scales, making them less noisy and more effective at transmitting information.
  • The study shows that at higher levels (macroscales), networks are more resilient and efficient compared to lower levels (microscales) of biological networks.

What is a Protein Interactome?

  • A protein interactome is a map of interactions between proteins in a biological system.
  • Each node (point) represents a protein, and each edge (line) represents an interaction between two proteins.
  • These interactions are crucial for understanding how cells function, as proteins need to interact to carry out biological processes.

What is Effective Information (EI)?

  • Effective information (EI) is a measure of how predictable or uncertain a network is. The higher the EI, the more predictable the system’s behavior.
  • If EI is low, it indicates high uncertainty, meaning the network’s behavior is harder to predict.
  • The study uses EI to assess the noise and uncertainty in protein-protein interactions across different species.

Who Were the Subjects? (Methods)

  • The study examined the protein interactomes of 1840 species, including Bacteria, Archaea, and Eukaryota.
  • It analyzed how the EI changes as we move from simpler organisms (like bacteria) to more complex ones (like eukaryotes).
  • Different species’ interactomes were compared to see how their networks evolved over time and became more or less effective.

How Did Evolution Impact Protein Interactomes? (Results)

  • As evolution progressed, protein interactomes became more “informative” at higher scales, which means that the networks became more efficient in transmitting information.
  • Higher scales, known as macroscales, help reduce uncertainty in the network. These scales group smaller sub-networks (micro-nodes) into larger nodes (macro-nodes), which improves the overall effectiveness of the network.
  • In simpler organisms (like bacteria), the protein interactomes are more effective at lower scales, while in more complex organisms (like eukaryotes), the effectiveness shifts to higher scales (macroscales).
  • In eukaryotes, these macroscales help the network become more resilient, as they are better at maintaining function when parts of the network fail.

Why is Having Macroscales Important?

  • Biological networks must balance between being uncertain (which helps with resilience) and being effective (which helps with function).
  • Having macroscales allows networks to be both resilient and effective. At the lower scale (microscale), there is more noise, but at the higher scale (macroscale), the system is more stable and predictable.
  • This “certainty paradox” explains why networks in eukaryotes are more resilient—they have high uncertainty at the microscale but high certainty at the macroscale.

How Do Networks Evolve Resilience? (Network Resilience)

  • Resilience in networks is measured by how well they can withstand node failures (like protein mutations or environmental changes).
  • Nodes that are part of informative macroscales (higher scales) contribute more to the overall resilience of the network than those at lower scales (microscale).
  • By removing nodes from the network, the researchers measured how the network’s resilience changes. Nodes that contribute to macroscales help the network remain stable even when parts of it are disrupted.

Key Conclusions (Discussion)

  • The study shows that biological networks evolve by having more informative macroscales that reduce uncertainty and increase resilience.
  • As organisms evolved, they developed networks where macroscales became more important than microscale networks for survival and efficiency.
  • This trade-off between noise (uncertainty) and effectiveness helps biological systems maintain functionality even when parts of the network fail.
  • Evolution has led to the emergence of these higher scales in more complex organisms (eukaryotes), which are more resilient and effective compared to simpler organisms (prokaryotes).

观察到了什么? (引言)

  • 生物系统非常复杂且充满噪音,这使得它们的工作原理难以理解。噪音来自于基因和蛋白质相互作用中的随机事件。
  • 研究人员研究了1800多种物种中的蛋白质相互作用,了解这些系统在进化过程中噪音如何变化。
  • 他们发现,随着生命的进化,蛋白质网络在更高的尺度上变得更加有序,从而减少了噪音,提高了信息传递的效率。
  • 研究表明,生物网络中的高阶“宏观尺度”更具韧性,并且在信息传递上更有效。

什么是蛋白质相互作用网络?

  • 蛋白质相互作用网络是生物系统中蛋白质相互作用的图示。
  • 每个节点(点)代表一个蛋白质,每条边(线)代表两个蛋白质之间的相互作用。
  • 这些相互作用对于理解细胞如何运作至关重要,因为蛋白质需要相互作用才能完成生物过程。

什么是有效信息 (EI)?

  • 有效信息(EI)是衡量网络中不确定性(或噪音)的指标。EI越高,网络的行为越可预测。
  • 如果EI低,表示系统不确定性大,网络行为难以预测。
  • 本研究使用EI来评估不同物种中蛋白质相互作用的噪音和不确定性。

研究对象是谁? (方法)

  • 这项研究考察了来自1800多种物种(包括细菌、古菌和真核生物)的蛋白质相互作用网络。
  • 它分析了这些物种在进化过程中如何在不同的网络尺度上变化,变得更加有效或噪声更多。
  • 通过比较不同物种的网络,研究者发现,随着进化的进行,网络的高阶尺度(宏观尺度)变得更重要。

进化如何影响蛋白质相互作用网络? (结果)

  • 随着进化的推进,蛋白质相互作用网络在高阶尺度上变得更“有信息”,这意味着网络在传递信息时更有效。
  • 高阶尺度(宏观尺度)有助于减少网络中的不确定性。这些尺度将较小的子网络(微节点)聚集成更大的节点(宏节点),从而提高网络的整体有效性。
  • 在简单的生物体(如细菌)中,蛋白质相互作用网络在低阶尺度上更有效,而在更复杂的生物体(如真核生物)中,效果转向了更高的尺度(宏观尺度)。
  • 在真核生物中,这些宏观尺度帮助网络变得更加有韧性,因为它们在网络的一部分失败时能保持功能。

为什么有宏观尺度很重要?

  • 生物网络必须在不确定性(有助于韧性)和有效性(有助于功能)之间找到平衡。
  • 拥有宏观尺度的网络能够在低尺度(微尺度)保持更多噪音,但在高尺度(宏观尺度)变得更加稳定和可预测。
  • 这种“确定性悖论”解释了为什么真核生物网络更具韧性——它们在微尺度上有更多不确定性,但在宏观尺度上具有更高的确定性。

网络如何演化出韧性? (网络韧性)

  • 网络的韧性是通过测试节点故障后的网络保持能力来衡量的。
  • 研究发现,属于宏观尺度(更高尺度)的节点比属于微尺度(低尺度)的节点对网络的韧性贡献更大。
  • 通过移除节点并测量网络韧性的变化,研究者发现,属于宏观尺度的节点帮助网络在遭遇故障时保持稳定。

主要结论 (讨论)

  • 研究表明,生物网络通过形成更有信息的宏观尺度来减少不确定性和提高韧性。
  • 随着生物体的进化,它们发展出了更加依赖于宏观尺度的网络,而不是依赖于微尺度的网络。
  • 这种在噪音(不确定性)和有效性之间的平衡帮助生物系统在不同网络部分失败时保持功能。
  • 进化已经导致这些高阶尺度在更复杂生物体(真核生物)中变得更加重要,从而使它们更具韧性和有效性。