Morphoceuticals Perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine cancer and aging Michael Levin Research Paper Summary

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


What is Anatomical Homeostasis?

  • Anatomical homeostasis is the ability of groups of cells to collectively achieve specific, large-scale body structures and defend them against problems like tumors, aging, or injuries.
  • It’s the process by which cells communicate and cooperate to create complex organs and tissues in a controlled, adaptable way.
  • In the body, this process can recover from disruptions, like when a salamander regrows a lost limb or when a human’s liver regenerates after damage.

What is Developmental Bioelectricity?

  • Developmental bioelectricity is the exchange of voltage signals across cells in the body, which helps guide the development and repair of tissues.
  • Ion channels, gap junctions (electrical synapses), and other systems generate and share these electrical signals between cells, affecting their behavior and how tissues grow.
  • This system allows cells to coordinate and make decisions as a group about where organs should form and how they should develop.

What Are Electroceuticals?

  • Electroceuticals are a class of drugs that target the electrical signals between cells, especially those controlled by ion channels.
  • These drugs work by manipulating bioelectric networks in tissues, allowing them to guide processes like regeneration or prevent cancer.
  • Instead of changing genes or proteins directly, electroceuticals modify the electrical “blueprints” that cells follow during development.

How Does Bioelectricity Control Regeneration?

  • Bioelectricity controls tissue regeneration by influencing the flow of ions across cell membranes, creating electrical gradients.
  • These gradients help guide where new tissues form, such as when a frog regrows its tail or when planarians regenerate lost body parts.
  • By applying certain drugs that influence these electrical patterns, it’s possible to trigger regeneration without directly manipulating genes.
  • For example, a drug that alters the electrical state of a tissue can induce regeneration in a damaged area, like regenerating a tail in a frog or a leg in a salamander.

How Do Bioelectric Signals Affect Cancer?

  • Cancer can be viewed as a problem of bioelectric miscommunication, where cells stop coordinating properly and grow uncontrollably.
  • Abnormal bioelectric signals in cancer cells make them different from normal cells, which is why tumors can be detected by looking at their electrical properties.
  • Manipulating bioelectric patterns in cancer cells can help normalize their behavior, potentially stopping tumor growth without destroying the cells outright.
  • For example, by applying drugs that hyperpolarize (make more negative) the bioelectric state of cancer cells, it’s possible to slow or reverse tumor growth.

What is Bioelectricity’s Role in Aging?

  • Aging may be the result of a failure in the body’s bioelectric regulation, where the system that maintains tissue organization and function breaks down over time.
  • Bioelectricity controls many processes that keep the body functioning, and as bioelectric signals weaken with age, tissues may begin to deteriorate, leading to aging-related diseases.
  • Research suggests that by restoring or enhancing bioelectric signals, it might be possible to delay or reverse some aspects of aging, improving health and longevity.

What Are Morphoceuticals?

  • Morphoceuticals are drugs designed to target the body’s bioelectric signals, guiding the body to regenerate or repair itself.
  • These drugs don’t change the DNA or proteins directly but instead focus on adjusting the bioelectric “patterns” that guide tissue formation.
  • For instance, certain bioelectric drugs can prompt the body to regenerate a missing body part, like a tail in a frog or a limb in a salamander, by providing the right electrical signals.

How Can Bioelectricity Be Used to Improve Regenerative Medicine?

  • By targeting the bioelectric interface between cells, it’s possible to promote tissue regeneration, repair birth defects, or even encourage the body to grow new organs or appendages.
  • Bioelectric interventions can also help reverse malformations caused by mutations or environmental factors like teratogens.
  • Examples include using drugs to correct bioelectric patterns in embryos or regenerating organs in animals by manipulating their bioelectric state.

How Does Bioelectricity Affect Stem Cells?

  • Stem cells, which are capable of becoming many types of cells, are influenced by bioelectric signals that determine which type of cell they will become.
  • These signals help guide stem cells to the correct locations and guide them to differentiate into the appropriate tissues during development or regeneration.
  • By manipulating the bioelectric state of stem cells, it’s possible to promote their differentiation into specific tissue types, aiding in the regeneration of organs or limbs.

How Do Drugs Target Bioelectric Networks?

  • Drugs that target ion channels and gap junctions can be used to modify bioelectric patterns in tissues.
  • For example, drugs like Ivermectin and SCH28080 can influence the electrical state of cells, helping to correct deformities or promote regeneration in tissues.
  • These drugs work by manipulating the flow of ions across cell membranes, creating the electrical gradients needed to guide tissue growth and repair.

What Does the Future Hold for Morphoceuticals?

  • In the future, we could see morphoceuticals used widely to treat conditions like cancer, aging, and injuries by targeting the bioelectric patterns that control growth and healing.
  • The development of new morphoceuticals will likely focus on repurposing existing drugs and discovering new ones that can control bioelectric signals at a high level.
  • As more is understood about bioelectric signaling, new opportunities will arise to treat a wide range of conditions with minimal interference in the body’s natural processes.

观察到了什么? (引言)

  • 解剖稳态是细胞群体共同实现特定、大规模身体结构的能力,并防御肿瘤、衰老或损伤等问题。
  • 这是细胞通过相互沟通与合作来创建复杂器官和组织的过程,以一种可控、适应的方式进行。
  • 在身体中,这一过程能够恢复来自外界干扰的影响,比如当萨曼德拉(蜥蜴)再生失去的肢体,或是人类的肝脏在损伤后再生。

什么是发展生物电学?

  • 发展生物电学是跨细胞交换电压信号的过程,这有助于指导组织的发育与修复。
  • 离子通道、间隙连接(电突触)及其他系统生成并共享这些电信号,影响细胞行为以及组织的生长。
  • 该系统让细胞在发展过程中协调与决策,决定器官应该在哪里形成以及如何发育。

什么是电疗法?

  • 电疗法是一类针对细胞间电信号的药物,特别是那些通过离子通道控制的电信号。
  • 这些药物通过调整组织中的生物电网络来发挥作用,从而帮助触发再生或防止癌症。
  • 与直接改变基因或蛋白质不同,电疗法调整的是细胞在发展过程中遵循的电“蓝图”。

生物电学如何控制再生?

  • 生物电学通过影响细胞膜上离子的流动来控制组织再生,创造电梯度。
  • 这些梯度帮助指导新组织的形成,就像青蛙再生尾巴或计划虫再生丢失的身体部分。
  • 通过应用特定药物来影响这些电模式,可以在没有直接操控基因的情况下触发再生。
  • 例如,一种药物可以通过改变组织的电状态来诱导再生,像青蛙的尾巴或蜥蜴的肢体。

生物电学如何影响癌症?

  • 癌症可以被视为生物电学错误通信的问题,细胞不再正确协调,导致不受控制地生长。
  • 癌细胞中的生物电信号异常,使它们与正常细胞不同,因此可以通过观察它们的电特性来检测肿瘤。
  • 通过改变癌细胞的生物电模式,可以帮助使它们的行为恢复正常,从而停止肿瘤生长,而不必直接摧毁细胞。
  • 例如,通过应用能让癌细胞过极化(变得更负)的药物,可以减缓或逆转肿瘤生长。

生物电学如何在衰老中起作用?

  • 衰老可能是身体生物电学调节失败的结果,负责维持组织的有序性和功能的系统随着时间的推移逐渐崩溃。
  • 生物电学控制着许多保持身体运作的过程,随着衰老,生物电信号逐渐减弱,导致组织退化,从而引发衰老相关疾病。
  • 研究表明,通过恢复或增强生物电信号,可能延迟或逆转衰老的一些方面,从而改善健康与寿命。

什么是形态药物?

  • 形态药物是设计用于靶向身体生物电信号的药物,指导身体自我再生或修复。
  • 这些药物不会直接改变DNA或蛋白质,而是集中调整细胞在发育过程中的电“模式”。
  • 例如,某些生物电药物可以通过提供正确的电信号来诱导身体再生缺失的身体部分,如青蛙的尾巴或蜥蜴的肢体。

生物电学如何促进再生医学?

  • 通过靶向细胞之间的生物电接口,可以促进组织再生、修复出生缺陷,甚至促使身体生成新的器官或附肢。
  • 生物电干预还可以帮助逆转由突变或环境因素如致畸物引起的畸形。
  • 例如,利用药物来纠正胚胎中的生物电模式,或通过操作生物电状态来再生动物中的器官。

生物电学如何影响干细胞?

  • 干细胞能够成为许多类型的细胞,这些细胞会受到生物电信号的影响,决定它们将成为哪种类型的细胞。
  • 这些信号帮助指导干细胞到达正确的位置,并引导它们分化为合适的组织类型,促进器官或四肢的再生。
  • 通过操控干细胞的生物电状态,可以促进其分化为特定的组织类型,帮助器官或四肢的再生。

药物如何靶向生物电网络?

  • 靶向离子通道和间隙连接的药物可以用来修改组织中的生物电模式。
  • 例如,像伊维菌素和SCH28080这样的药物可以影响细胞的电状态,帮助修复畸形或促进组织再生。
  • 这些药物通过操控离子跨细胞膜的流动,创造出引导组织生长和修复的电梯度。

形态药物的未来展望

  • 在未来,我们可能会看到形态药物被广泛用于治疗癌症、衰老和损伤,通过靶向控制生物电模式来指导再生和修复。
  • 形态药物的研发可能会集中在重新利用现有药物和发现新的药物,这些药物可以控制高层次的生物电信号。
  • 随着我们对生物电信号理解的深入,将会有更多的机会通过简单的信号干预来治疗广泛的疾病,避免对身体自然过程的过度干预。