Michael Levin | Bernardo Kastrup #2: Memory, Time, & Perception Bioelectricity Podcast Notes

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Initial Fragmentation of Consciousness

  • Levin and Kastrup discuss the idea of individual minds as “fragmented alters” of a larger collective intelligence.
  • Kastrup speculates that the initial fragmentation may have been an “amazing accident,” akin to abiogenesis, or potentially a traumatic experience due to the “vertigo of Eternity.” He acknowledges that he can’t really ever know, the best anwser would be to look back in time as that’s when and how it really happend, like looking for proof that it had never been before such as in a-bio-genisis, this split must only need to happen a couple of times before evolution via natural selection.
  • Levin, referencing embryonic development, suggests fragmentation is necessary for complex structures to form, preventing a uniform, “boring” field of cells, to him the best biological compairison is comparing planarian.
  • It has been found experimentally by changing planarians electrical gradients, that a two-headed flatworm (not one head) has its biological bluepring now and in future copies, switched via an induced and heritable change in voltage gradient/polarity; not a mutation to its genetics!
  • Kastrup notes the evolutionary advantage of dissociated autonomous functions (heartbeat, etc.), and also suggests that if a self-induced was ever needed, and as trauma in an enclosed system must happen to an individual from an outsdie system, so a trauma wouldn’t cause fragmentation but instead something more extreme than boredom.

Nature of Memory

  • Levin and Kastrup discuss memory as an active reconstruction, not a static recording.
  • Kastrup suggests memory is an access to the past, which (along with the future) still exists; our cognitive system filters out this access for efficiency.
  • Memory imperfections arise because each recollection is a new present, colored by current emotions, expectations, and other memories.
  • Kastrup references terminal lucidity as evidence that memories themselves are not lost, but access mechanisms can be impaired.
  • Levin mentions experiments with planaria where memories (including morphological information) can be transferred between individuals, even without genetic changes.
  • Levin highlights the ability to change the ‘blueprint’ of an organism. Planaria show information transferred and changing morphogensis that is not due to moving and replicating (via irradiated parts of it), and does not require genetics and changes to DNA. The information spreading is from its voltage gradient/polarizaiton!

Multi-Scale Intelligence and Boundaries

  • Levin believes cognition, possibly very small conciousnesses as well, can be applied on various layers; a continuum.
  • Levin sees cognition as a spectrum, and most systems have some form of “proto-experience.” He extends it even non-traditional systems such as weather.
  • Kastrup sees living organisms as discrete systems, and inanimate objects as linguistic constructs, not distinct systems. This would then give ‘no things’ (according to the projection/use of language in descriping ontology), like weather, not having a conciousness.
  • Levin agrees that autopoeisis (self-establishing boundaries) is crucial for defining a system. He adds it may require evolution.
  • They discuss the implications of creating artificial beings that meet criteria for consciousness and moral worth.
  • They express concern, via examples such as comparing training a simulation of something, a manequinn that looks like a human and others, and comparing the manequinn as evidence of it’s underlying processes is simlar or concious is that these simulacrums being evidence and/or misundersoodings are concerning.

Empirical Testing of Cognition

  • Levin and Kastrup agree it must start from a humble standpoint (being weary to describe it when really any intelligence, as best understood right now, is the capacity to model anything, thus there are limitations to even know it’s intelligence. The best we could say so far is in that some ‘mind/agent’ exists if its prediction is very reliable such as when changing it’s input gives predictably changing outputs.
  • Levin emphasizes empirical testing of cognitive boundaries using tools like causal information theory.
  • Best place to set cognitive boundary empirically will afford a models for a ‘systems’ best prediction.
  • He uses the octopus’s distributed nervous system as an example where limb goals can differ from the central organism.
  • Human’s body-parts (except breathing), can learn different ways/tools/patterns/ to do actions, but are unified with its lessons learnt (left foot does not need to know of ‘right foot knowing fire is hot’).
  • He mentions humans have limited access to even parts of their own brains (e.g., the right hemisphere).
  • The underlying processes (of bio-eletrical morphogensis or memory) of a manequinn will likely be diffrent, even though it could appear human in that it could respond or simulate a real-world object via training, to say the mannequin (and its underlying systems/programming), must then have its own unique form concioussnes via analogy to biological, can be erronus.
  • Kastrup discusses information integration and the “Exclusion Principle” of IIT as related to defining system boundaries.

Broader Implications

  • Kastrup also mentions how our systems are never perfect. The exclusion-principle will still give it a conciousness and there is no known way of making a faultline strong, no matter the complex.
  • Levin stresses that training is a key aspect of cognition, especially when a system learns something its parts cannot.
  • A biological system (like flatworms or any animal really), is able to change morphogenetic or other biological structures and pathways to achive and remember a different and better and/or new form, it’s also heritable.
  • He gives the example of a rat learning an association that individual cells cannot experience.
  • Levin has also found gene regulatory networks displaying pavlovian conditioning; which requires humblness to describe, such as for something simple as the weather (that a computer’s simulation for the weather will not prove or have ‘true’ answers).
  • They raise ethical concerns about mistreating artificial beings with potential for suffering.
  • Humility about Recognizing it, let alone defining.

Application in Biomedicine and Ethics

  • Understanding cellular decision-making has implications for biomedicine: birth defects, injury, aging, cancer. It can even lead to transhumanism, a controversial thing Michael Levin himself likes.
  • Understanding morphogenesis as “intelligent navigation” helps us understand diverse intelligences and what constitutes a mind.
  • Cells will continue ‘knowing’ or having voltage/polarity configurations of a two-headed Planarian that has already lost it’s second head, a one-headed Plarian also has cells that remember their form and it being ‘one-headedness’.
  • Expanded understanding of diverse intelligences has ethical implications, demanding compassion and understanding for beings different from us.
  • In terms of how we treat and what should/would/will change in our biological organisms, a big consideration has been the lack of focus given to an organism’s structure that’s different and underlying system(s)/memory for biological and it’s structures, leading to potential big impacts when they do ‘listen’ and apply/discover/implement new solutions in ‘their’ domain: ‘Software’.

意识的最初分裂

  • 莱文和卡斯特鲁普讨论了个体思想作为更大集体智慧的“碎片化变体”的观点。
  • 卡斯特鲁普推测,最初的分裂可能是一次“惊人的意外”,类似于生命起源,或者可能是由于“永恒的眩晕”而产生的创伤经历。他承认他无法真正知道,最好的答案是回溯时间,因为那才是真正发生的时间和方式,就像寻找它以前从未存在过的证据一样,比如在生命起源中,这种分裂只需要发生几次,然后通过自然选择进化。
  • 莱文参考胚胎发育,认为分裂对于形成复杂结构是必要的,防止形成均匀、“无聊”的细胞场,对他来说,最好的生物学比较是比较涡虫。
  • 通过改变涡虫的电梯度,实验发现双头扁虫(不是一个头)现在和未来副本的生物蓝图,通过诱导的和可遗传的电压梯度/极性变化而改变;不是其遗传学的突变!
  • 卡斯特鲁普指出了分离的自主功能(心跳等)的进化优势,并且还提出,如果自我诱导是必要的,并且由于封闭系统中的创伤必须发生在个体身上,来自外部系统,所以创伤不会导致分裂,而是比无聊更极端的东西。

记忆的本质

  • 莱文和卡斯特鲁普讨论了记忆是一种主动的重建,而不是静态的记录。
  • 卡斯特鲁普认为记忆是对过去的访问,过去(以及未来)仍然存在;我们的认知系统为了效率而过滤掉了这种访问。
  • 记忆缺陷的出现是因为每一次回忆都是一个新的现在,受到当前情绪、期望和其他记忆的影响。
  • 卡斯特鲁普参考了临终清醒作为证据,表明记忆本身并没有丢失,但是访问机制可能受损。
  • 莱文提到了涡虫的实验,其中记忆(包括形态信息)可以在个体之间转移,即使没有基因变化。
  • 莱文强调了改变生物体“蓝图”的能力。涡虫显示了信息传递和形态发生的变化,这不是由于移动和复制(通过辐照的部分),并且不需要遗传学和DNA的变化。信息传播来自其电压梯度/极化!

多尺度智能与边界

  • 莱文认为认知,可能也包括非常小的意识,可以在不同的层次上应用;一个连续体。
  • 莱文认为认知是一个光谱,大多数系统都有某种形式的“原始经验”。他甚至将其扩展到非传统系统,如天气。
  • 卡斯特鲁普认为生物体是离散系统,而无生命的物体是语言结构,而不是不同的系统。这将使“无物”(根据描述本体论中语言的投射/使用),如天气,没有意识。
  • 莱文同意自创生(自我建立边界)对于定义一个系统至关重要。他补充说,它可能需要进化。
  • 他们讨论了创造符合意识和道德价值标准的人造生物的影响。
  • 他们表达了担忧,通过诸如比较训练一个模拟物,一个看起来像人类的人体模型和其他东西的例子,并将人体模型作为其潜在过程相似或有意识的证据,这些模拟物作为证据和/或误解是令人担忧的。

认知的实证检验

  • 莱文和卡斯特鲁普同意它必须从一个谦卑的立场开始(当真正任何智能,正如目前所理解的那样,是建模任何事物的能力时,要小心描述它,因此甚至不知道它的智能也是有限制的。到目前为止,我们最好的说法是,如果它的预测非常可靠,比如当改变它的输入时给出可预测的输出变化,那么一些“心灵/代理”存在。
  • 莱文强调使用因果信息论等工具对认知边界进行实证检验。
  • 实证设置认知边界的最佳位置将为一个“系统”的最佳预测提供模型。
  • 他以章鱼的分布式神经系统为例,其中肢体的目标可能与中央生物体不同。
  • 人体的部分(呼吸除外)可以学习不同的方式/工具/模式来执行动作,但与其吸取的教训统一(左脚不需要知道“右脚知道火是热的”)。
  • 他提到人类对自身大脑的某些部分(例如,右半球)的访问有限。
  • 人体模型的潜在过程(生物电形态发生或记忆)可能会有所不同,即使它看起来很像人类,因为它可以响应或通过训练模拟现实世界的对象,说人体模型(及其底层系统/程序)必须通过类比生物学拥有自己独特形式的意识,这可能是错误的。
  • 卡斯特鲁普讨论了信息集成和IIT的“排斥原则”与定义系统边界相关。

更广泛的影响

  • 卡斯特鲁普还提到我们的系统永远不完美。排斥原则仍然会赋予它意识,并且没有已知的方法可以使断层线坚固,无论多么复杂。
  • 莱文强调训练是认知的一个关键方面,尤其是当一个系统学习到其组成部分无法体验的东西时。
  • 生物系统(如扁虫或任何动物)能够改变形态发生或其他生物结构和途径,以实现和记住不同和更好和/或新的形式,它也是可遗传的。
  • 他举了一个老鼠学习个体细胞无法体验的关联的例子。
  • 莱文还发现了基因调控网络表现出巴甫洛夫条件反射;这需要谦卑来描述,比如对于像天气这样简单的东西(计算机对天气的模拟不会证明或具有“真实”答案)。
  • 他们对虐待具有潜在痛苦的人造生物提出了道德担忧。
  • 谦逊地认识到它,更不用说定义它了。

在生物医学和伦理学中的应用

  • 了解细胞决策对生物医学具有影响:出生缺陷、损伤、衰老、癌症。它甚至可以导致超人类主义,迈克尔·莱文本人喜欢的一个有争议的事情。
  • 将形态发生理解为“智能导航”有助于我们理解不同的智能以及什么构成了心灵。
  • 已经失去第二个头的双头涡虫的细胞将继续“知道”或具有电压/极性配置,单头涡虫也有细胞记住它们的形式和“单头性”。
  • 扩大对不同智能的理解具有伦理意义,要求对不同于我们的生物具有同情心和理解。
  • 就我们如何对待以及什么应该/将要/将在我们的生物有机体中改变而言,一个很大的考虑是缺乏对生物体的结构的关注,这种结构不同且潜在的系统/生物学及其结构的记忆,导致当他们在“他们的”领域:“软件”中“倾听”并应用/发现/实施新的解决方案时,可能会产生巨大的影响。