ICIS #94 Michael Levin in Conversation With Bernardo Kastrup Bioelectricity Podcast Notes

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction and Core Concepts

  • Discussion on the intersection of Michael Levin’s work on bioelectricity and morphogenesis and Bernardo Kastrup’s analytic idealism (a form of objective idealism). The core idea is that nature is fundamentally mental, but not in the sense of individual minds; rather, it consists of “mental states at large.”
  • Kastrup uses psychiatric dissociation (dissociative identity disorder, formerly multiple personality disorder) as a model. Dissociative processes have a physical appearance when imaged (e.g., brain scans). He proposes that life/biology/metabolism *is* the appearance of dissociation within a transpersonal field of subjectivity.
  • Levin’s work focuses on the scaling of minds and how the boundaries between a “self” and the “outside world” (or other minds) are formed. He, simliarly to Kastrup, talks of dissociation in cells.

Embryogenesis, Dissociation, and Boundaries

  • Embryogenesis begins as a single “blastoderm” (a flat disc of cells). It’s not genetically predetermined how many individuals will arise; it’s determined physiologically. Scratching the blastoderm can create separate, self-organizing embryos (and eventually conjoined twins).
  • This illustrates the plasticity of boundaries and the initial “pool of potentiality.” Cells must “decide” what constitutes “self” versus “world.”
  • Cancer is viewed as a “somatic dissociative disorder” where cells shrink their “cognitive light cones” and treat the rest of the body as external environment. This is a failure of the cognitive “glue” that binds subunits.
  • Levin see’s cancers as somatic dissociative disorder of collective intelligence, agreeing with Kastrup.

Morphogenesis and Top-Down Causation

  • DNA provides the “bricks” (proteins), but something else determines how those bricks are assembled (e.g., into Cologne Cathedral, not just a pile of bricks).
  • Embryos have a “goal” – a specific journey in anatomical morphospace. Individual cells don’t “know” the final form (e.g., a salamander’s limb), but contribute to a large-scale, cybernetic system.
  • Levin proposes “top-down causation” where the higher-level goal (target morphology) shapes the “energy landscape” of lower levels (cells and molecules).
  • This goal isn’t captured by analyzing just by zooming into, local interactions.

Decoding Bioelectric Patterns

  • Levin’s lab uses techniques from neuroscience (neural decoding) to “read” the large-scale bioelectric patterns of tissues. These patterns reveal the “goals” of the tissue and predict future development.
  • They can reprogram these patterns (e.g., making two-headed planaria) by manipulating the bioelectric interface (ion channels and gap junctions) – *not* by changing the DNA. The revised “target morphology” is then maintained.
  • Where the large scale ‘goals’ orginate: It’s probably beyond evolution and related more with mathematics’ rules and constratins in a way.

Novel Creatures and Plasticity

  • Evolution creates *problem-solving agents*, not just solutions to specific problems. Life exhibits incredible plasticity.
  • Examples: Tadpoles with eyes on their tails can see immediately (no evolutionary adaptation required). This challenges the notion that evolution is the *sole* source of these patterns.
  • The “latent space” of possibilities is much larger than what we typically observe. Examples include plant galls induced by wasps, revealing potential forms not directly encoded in the plant’s genome.

Hardware, Software, and Problem-Solving

  • While DNA provides essential “hardware” (proteins), it doesn’t fully determine outcomes. The “hardware/software” analogy is helpful.
  • Example: *Nematostella* embryos can have varying numbers of chromosomes (4N, 6N, 8N, etc.) and still develop normally. Cell size adjusts, and even single cells can form tubules by bending. This demonstrates problem-solving at multiple levels (cell-cell communication, cytoskeletal bending).
  • Embryos have a “beginner’s mind,” adapting to what they have, not overtraining on priors. This challenges the notion of fixed, genetically determined programs. Two-headed planaria have no genomic differences; the two-headedness is encoded in electrical memories.
  • Cancer cells can be coaxed to behave in ways conducive to the over-arching, healthy tissue when its bioelectircal signals are tampered with.

Planaria and Memory Imprint

  • Planaria trained, headless, regenerate new brains that, can remember trained skills: which suggest, info imprint of skills (from previous brain) being implemented on new brain.
  • Imprinting must of been performed by rest of the old body. But, not sure where.

Chimeras, Composite Beings, and Boundaries

  • Embryos can be *combined* (not just separated) to form single individuals. Xenobots are a simpler model, where dissociated skin cells self-assemble.
  • There might be something special about lineages (continuous self-assembly), but the boundary between self and world is highly plastic. The number of “selves” can change over time.
  • Chimeras (e.g., cats black on one side, orange on the other) have different DNA. You can combine frog and axolotl cells. Life is remarkably interoperable due to its problem-solving nature.
  • Later, cells and tissues can still connect via biological interface to create functional organization or units. Mice, who share linked brains from thousands of miles away can cooperate to solve tasks.

Unified Consciousness in Xenobots?

  • There is coherence.
  • Xenobots (at least the skin-cell-only kind) *may* have unified consciousness. Levin’s lab is investigating this using measures of integrated information processing (like those used in neuroscience).
  • Looking for behaviors (in their unique space).
  • Behavioral and physiological evidence, including calcium activity patterns, will be used to assess the level of integration. The question is whether cells are acting separately or as a coherent whole.
  • Potentially sleep patterns may be used to determine this too.

Internal Dissociation and Attention

  • Even within humans, there are “internal dissociative boundaries.” We don’t consciously introspect into liver or kidney function, likely for evolutionary reasons (efficiency).
  • Analogy: Riding a bike becomes automatic (dissociated) after training. We *can* take deliberate control, but it’s inefficient. Breathing is similar.
  • The Exclusion Principle of IIT (Integrated Information Theory) could relate to this. Attention restricts experience to a narrow area, “boosting” it at the cost of peripheral vision. High information integration in certain brain areas (e.g., default mode network) may lead to exclusion of other processes.
  • All parts of a body may show signals related to intelligence and consiouness (not just brain) because evolution may act and promote cognitive properties/traits in other tissues and cells, just at a slower pace.
  • Cancer represents a *fundamental* dissociation, where cells no longer follow the global template. This is distinct from the “normal” internal dissociation between, say, the brain and the liver.
  • Organs can also compete with each other to be more influencial in a developing being, especially early on in development.

Metamorphosis, Memories, and Past States

  • Metamorphosis presents another major change that organisms/agents may encounter during its existance, for instance, caterpillers that change completely in a hard-body butterfly from soft-bodied state.
  • Caterpillar/butterfly metamorphosis involves significant brain restructuring, yet memories can be retained. This raises questions about the location and nature of memory.
  • Kastrup speculates that if memory is access to *past states* (which are not physically observable), then it may not have a physical correlate. This contrasts with the view of memory as a “file on a hard disk.” It would be hard to study in Planaria, Rat, etc because they are non-physical phenomenon in nature.
  • Kastrup discusses and debates panpsychism versus consiousness.

导言与核心概念

  • 讨论迈克尔·莱文(Michael Levin)关于生物电和形态发生的工作,与贝尔纳多·卡斯特鲁普(Bernardo Kastrup)的分析唯心主义(一种客观唯心主义形式)之间的交叉点。核心思想是,自然本质上是精神性的,但不是指个体的心智,而是由“普遍的精神状态”组成。
  • 卡斯特鲁普使用精神病学分离(分离性身份障碍,以前称为多重人格障碍)作为模型。分离过程在成像时(例如,脑部扫描)具有物理外观。他提出生命/生物学/新陈代谢 *是* 在一个超个人主观领域内分离的表现。
  • 莱文的工作侧重于心智的尺度,以及“自我”与“外部世界”(或其他心智)之间的边界是如何形成的。他和卡斯特鲁普类似地谈到了细胞中的分离。

胚胎发生、分离和边界

  • 胚胎发生始于一个单一的“胚盘”(一个扁平的细胞盘)。产生多少个个体并不是基因预先决定的;它是由生理决定的。划伤胚盘可以产生独立的、自组织的胚胎(最终形成连体双胞胎)。
  • 这说明了边界的可塑性和最初的“潜能池”。细胞必须“决定”什么构成“自我”与“世界”。
  • 癌症被视为一种“躯体分离障碍”,其中细胞缩小其“认知光锥”,并将身体的其余部分视为外部环境。这是结合亚基的认知“胶水”的失败。
  • 莱文认为癌症是集体智能的躯体分离障碍,与卡斯特鲁普的观点一致。

形态发生与自上而下的因果关系

  • DNA提供“砖块”(蛋白质),但另一些东西决定了这些砖块如何组装(例如,组装成科隆大教堂,而不仅仅是一堆砖块)。
  • 胚胎有一个“目标”——在解剖形态空间中的特定旅程。单个细胞并不“知道”最终形态(例如,蝾螈的肢体),但对一个大型控制系统做出贡献。
  • 莱文提出“自上而下的因果关系”,其中较高层次的目标(目标形态)塑造较低层次(细胞和分子)的“能量景观”。
  • 仅仅通过放大局部相互作用来分析,无法捕捉到这个目标。

解码生物电模式

  • 莱文的实验室使用神经科学的技术(神经解码)来“读取”组织的大尺度生物电模式。这些模式揭示了组织的“目标”,并预测未来的发展。
  • 他们可以通过操纵生物电接口(离子通道和间隙连接)来重新编程这些模式(例如,制造双头涡虫)——*而不是*通过改变DNA。然后维持修订后的“目标形态”。
  • 大规模“目标”的起源:它可能超越了进化,并且与数学规则和约束以某种方式更相关。

新型生物和可塑性

  • 进化创造的是*解决问题的能动主体*,而不仅仅是特定问题的解决方案。生命表现出令人难以置信的可塑性。
  • 例子:尾巴上有眼睛的蝌蚪可以立即看到(不需要进化适应)。这挑战了进化是这些模式的*唯一*来源的观念。
  • 可能性的“潜空间”比我们通常观察到的要大得多。例子包括黄蜂诱导的植物瘿,揭示了并非直接编码在植物基因组中的潜在形式。

硬件、软件和问题解决

  • 虽然DNA提供了必要的“硬件”(蛋白质),但它并不能完全决定结果。“硬件/软件”类比很有帮助。
  • 例子:*线星海葵*(*Nematostella*)胚胎可以具有不同数量的染色体(4N、6N、8N等),并且仍然正常发育。细胞大小会调整,甚至单个细胞也可以通过弯曲形成小管。这表明了多个层次(细胞间通讯、细胞骨架弯曲)的问题解决能力。
  • 胚胎有一种“初学者的心态”,适应它们所拥有的,而不是过度训练先验。这挑战了固定的、基因决定的程序的观念。双头涡虫没有基因组差异;双头性编码在电记忆中。
  • 当癌细胞的生物电信号被篡改时,可以诱导它们以有利于整体健康组织的方式行事。

涡虫和记忆印记

  • 经过训练的无头涡虫,再生的新大脑可以记住训练过的技能:这表明,技能的信息印记(来自以前的大脑)正在新的大脑上实施。
  • 印记一定是由旧身体的其余部分执行的。但是,不确定在哪里。

嵌合体、复合生物和边界

  • 胚胎可以*结合*(不仅仅是分离)以形成单个个体。异种机器人是一个更简单的模型,其中分离的皮肤细胞自组装。
  • 谱系(连续的自组装)可能有一些特别之处,但自我和世界之间的边界是高度可塑的。“自我”的数量可以随着时间而改变。
  • 嵌合体(例如,一侧为黑色,另一侧为橙色的猫)具有不同的DNA。你可以结合青蛙和蝾螈细胞。由于其解决问题的性质,生命具有显著的互操作性。
  • 之后,细胞和组织仍然可以通过生物接口连接以创建功能组织或单位。共享来自数千英里之外的连接大脑的小鼠,可以合作解决任务。

异种机器人中的统一意识?

  • 存在一致性。
  • 异种机器人(至少仅由皮肤细胞组成的种类)*可能*具有统一意识。莱文的实验室正在使用综合信息处理的措施(如神经科学中使用的那些)来研究这一点。
  • 在它们独特的空间中寻找行为。
  • 行为和生理证据,包括钙活动模式,将用于评估整合水平。问题是细胞是单独行动还是作为一个连贯的整体行动。
  • 可能睡眠模式也可以用来确定这一点。

内部分离与注意力

  • 即使在人类内部,也存在“内部分离边界”。我们不会有意识地内省肝脏或肾脏功能,这可能是出于进化原因(效率)。
  • 类比:骑自行车在训练后变得自动(分离)。我们*可以*采取有意的控制,但效率低下。呼吸也是如此。
  • IIT(综合信息理论)的排除原则可能与此有关。注意力将体验限制在一个狭窄的区域,以牺牲周边视野为代价“增强”它。大脑某些区域(例如,默认模式网络)中的高信息整合可能会导致排除其他过程。
  • 身体的所有部分都可能显示出与智力和意识相关的信号(不仅仅是大脑),因为进化可能在其他组织和细胞中起作用并促进认知特性/特征,只是速度较慢。
  • 癌症代表了一种*根本*的分离,其中细胞不再遵循全局模板。这与大脑和肝脏之间的“正常”内部分离不同。
  • 器官也可以相互竞争,以便在发育中的生物中更有影响力,尤其是在发育早期。

变态、记忆和过去的状态

  • 变态是生物体/能动主体在其存在期间可能遇到的另一个重大变化,例如,毛毛虫从软体状态变成硬体的蝴蝶。
  • 毛毛虫/蝴蝶变态涉及显著的大脑重组,但记忆可以保留。这引发了关于记忆的位置和性质的问题。
  • 卡斯特鲁普推测,如果记忆是访问*过去的状态*(这些状态在物理上是不可观察的),那么它可能没有物理关联物。这与将记忆视为“硬盘上的文件”的观点形成对比。 这在涡虫、大鼠等中很难研究,因为它们是自然界中的非物理现象。
  • 卡斯特鲁普讨论和辩论了泛心论与意识。