Unveiling the Mind-Blowing Biotech of Regeneration: Michael Levin – YouTube Bioelectricity Podcast Notes

PRINT ENGLISH BIOELECTRICITY GUIDE

PRINT CHINESE BIOELECTRICITY GUIDE


Introduction and Bioelectricity

  • Non-neural bioelectric states exist: All cells, not just neurons, use ion channels, electrical synapses, and neurotransmitters for communication. These are ancient mechanisms, predating nervous systems.
  • Cells create voltage gradients: Cells maintain an electrical potential difference across their membranes by controlling ion flow (potassium, sodium, etc.). Each cell is like a tiny battery.
  • Bioelectric signals control anatomical space: Before controlling movement in 3D space (like brains do), bioelectric networks controlled cell behavior to navigate “morphospace” – the space of possible anatomical forms.
  • DNA specifies hardware, bioelectricity is software: The genome encodes the *structure* of cellular components (proteins, ion channels). The dynamic bioelectric activity is the *computation* that uses this hardware.

Experiments and Implications

  • The “Electric Face”: Before genes for facial features turn on, a bioelectric pattern resembling a face appears in the embryo. This pattern can be disrupted (causing defects) or moved (creating ectopic eyes, even in the gut).
  • Modularity and Triggers. The voltage patterns call modular subroutines. Injecting a channel will create an eye from cells that normally create a gut. This eye will consist partially of the normal gut cells. The bioelectricity instructs neighboring cells to be the appropriate part, implying that only very tiny injections are required, because after they trigger the local anatomical goal, the other cells comply to fit that anatomy (limb, liver, eyes, etc).
  • Cancer as disrupted communication: Cancer cells disconnect electrically from their neighbors, reverting to a single-cell-like state. Forcing cells to *remain* electrically connected can prevent tumor formation, even with oncogenes present.
  • Planarian regeneration and morphospace: Planaria regenerate perfectly. Their cells “know” what the target body plan is and how to rebuild it. This is a *collective intelligence* problem, not just a molecular biology problem.
  • Xenobots: Frog skin cells, isolated from the embryo, *spontaneously* form new organisms (xenobots) with novel behaviors (movement, self-assembly). They have a normal frog genome, but express a new “default” behavior, not selected for by evolution.
  • Identity and electrical connection: Gap junctions (electrical connections between cells) can blur the lines between “self” and “other,” contributing to the formation of larger-scale collective identities.
  • Placebo Effect: Mental Activity has direct bearing on physical activity. As you may send commands through intention to create new hormones or command the limbs to do things, so too may your mind instruct cellular growth and behavior, at least in the body which that mind exists.

Broader Concepts

  • Collective intelligence: Morphogenesis (body shape formation) is a *collective intelligence* problem, similar to how brains work, but operating in anatomical space instead of 3D space.
  • Homeostasis and set points: Where do anatomical “set points” (the target morphology) come from? It’s not just evolution; even without selection, cells exhibit surprising plasticity and new behaviors (e.g., xenobots).
  • Intentional Stance: When dealing with novel biological systems, it’s crucial to empirically *test* different levels of assumed cognition/agency to see which best explains their behavior (per Dennett).
  • Aging and the regenrative capacities of planeria indicates that as long as there exists adequate regenerataive processes, organisms like planaria do not age at all, but any human is not known to have their level of regenreative capabilities, so it could be that aging occurs when those regeneravtive capactities cannot keep up.
  • Consciouness can possibly interact with Morphogenesis: due to being part of a greater whole with cells of the same physical organism. And general Anesthesia being related to the gap juntional activity, disruption can indicate it impacts short term consciousness or attention, which when restored, reconfigures things at times as new random memories (in pleneria, as new head morphology).
  • Minimal Cognition: because there exists particles following least action principles that display quatum indeterminacy already are ‘something’. this suggests ‘goals’ and ‘spontenaity’ are, well, spontaneous!

导言与生物电

  • 存在非神经生物电状态:所有细胞,不仅仅是神经元,都使用离子通道、电突触和神经递质进行通讯。这些是古老的机制,早于神经系统出现。
  • 细胞产生电压梯度:细胞通过控制离子流(钾离子、钠离子等)来维持细胞膜两侧的电位差。每个细胞就像一个小电池。
  • 生物电信号控制解剖空间:在控制三维空间中的运动(如大脑所做的)之前,生物电网络控制细胞行为以在“形态空间”中导航——即可能的解剖形式的空间。
  • DNA指定硬件,生物电是软件:基因组编码细胞组件(蛋白质、离子通道)的*结构*。动态生物电活动是利用这种硬件的*计算*。

实验与启示

  • “电脸”:在面部特征基因开启之前,胚胎中会出现一个类似脸部的生物电模式。这种模式可以被破坏(导致缺陷)或移动(产生异位眼睛,甚至在肠道中)。
  • 模块化和触发器:电压模式调用模块化的子程序。注射一个通道将从通常产生肠道的细胞中产生一个眼睛。这个眼睛将部分由正常的肠道细胞组成。生物电指示邻近的细胞成为合适的部分,这意味着只需要非常小的注射,因为在它们触发局部解剖目标后,其他细胞会顺从地适应那种解剖结构(肢体、肝脏、眼睛等)。
  • 癌症是中断的通讯:癌细胞在电学上与它们的邻居断开连接,恢复到类似单细胞的状态。即使存在致癌基因,迫使细胞*保持*电连接也可以防止肿瘤形成。
  • 涡虫再生和形态空间:涡虫完美地再生。它们的细胞“知道”目标体型是什么,以及如何重建它。这是一个*集体智能*问题,而不仅仅是一个分子生物学问题。
  • 异种机器人:从胚胎中分离出来的青蛙皮肤细胞,*自发地*形成具有新行为(运动、自组装)的新生物体(异种机器人)。它们具有正常的青蛙基因组,但表达了一种新的“默认”行为,而不是通过进化选择的。
  • 同一性和电连接:间隙连接(细胞之间的电连接)可以模糊“自我”和“他人”之间的界限,有助于形成更大规模的集体同一性。
  • 安慰剂效应:精神活动对身体活动有直接影响。正如你可能通过意图发送命令来产生新的激素或命令肢体做事一样,你的思想也可能指导细胞生长和行为,至少在那个思想存在的身体中是这样。

更广泛的概念

  • 集体智能:形态发生(身体形状形成)是一个*集体智能*问题,类似于大脑的工作方式,但在解剖空间而不是三维空间中运作。
  • 稳态和设定点:解剖学“设定点”(目标形态)从何而来?这不仅仅是进化;即使没有选择,细胞也表现出惊人的可塑性和新行为(例如,异种机器人)。
  • 意向立场:在处理新型生物系统时,重要的是经验性地*测试*不同水平的假定认知/自主性,以了解哪种最能解释它们的行为(根据丹尼特的观点)。
  • 衰老和涡虫的再生能力表明,只要存在足够的再生过程,像涡虫这样的生物体根本不会衰老,但已知没有任何人类具有它们水平的再生能力,因此衰老可能发生在那些再生能力无法跟上的时候。
  • 意识可能与形态发生相互作用:由于是与同一物理生物体的细胞组成一个更大的整体的一部分。而全身麻醉与间隙连接活动有关,中断可能表明它影响短期意识或注意力,当恢复时,有时会重新配置事物为新的随机记忆(在涡虫中,如新的头部形态)。
  • 最低限度的认知:因为存在遵循最小作用原理的粒子,这些粒子显示出量子不确定性,已经“是某种东西”。这表明“目标”和“自发性”是,嗯,自发的!