Michael Levin Bioelectricity 101 Crash Course Lesson 33: Smart Bandages: Bioelectric Wound Healing Technologies

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 33: Smart Bandages: Bioelectric Wound Healing Technologies Summary

  • Wound healing is a complex process involving cell migration, proliferation, differentiation, and tissue remodeling.
  • Endogenous bioelectric signals (natural electrical fields and voltage gradients) play a crucial role in coordinating wound healing.
  • Disruptions to these bioelectric signals can impair healing, leading to chronic wounds or excessive scarring.
  • “Smart bandages” are a new class of wound dressings that actively modulate bioelectric signals to promote faster and better healing.
  • These bandages can work through various mechanisms:
    • Conductive materials: Delivering electrical current directly to the wound.
    • Ion channel modulators: Releasing drugs or other compounds that open or block specific ion channels.
    • Piezoelectric materials: Generating electrical signals in response to mechanical pressure (e.g., from movement).
    • Biochemical delivery: Releasing growth factors or other signaling molecules in a spatially and temporally controlled manner.
  • The Biodome (which included prozac, a seretonin reuptake inhibitor) represents a new form of drug delivery, with some similar functions as traditional methods such as stitches.
  • “Smart bandages” can target different aspects of wound healing:
    • Cell migration: Guiding cells to the wound site.
    • Cell proliferation: Stimulating cell division to fill the gap.
    • Inflammation control: Reducing excessive inflammation that can hinder healing.
    • Scar reduction: Promoting regenerative healing instead of scar formation.
  • This technology holds great promise for treating a wide range of wounds, including burns, diabetic ulcers, and traumatic injuries. It could also improve surgical outcomes.
  • This type of healing goes beyond simply treating injuries and infection; bioelectric therapies hold an even higher potential such as regenerating whole limbs, or even reshaping structures to become more ideal shapes.

Michael Levin Bioelectricity 101 Crash Course Lesson 33: Smart Bandages: Bioelectric Wound Healing Technologies

Throughout this course, we’ve seen how bioelectricity isn’t just a side effect of life, but a powerful force shaping development, regeneration, and cellular behavior. Now, we’re going to explore how this knowledge can be applied to create revolutionary new medical technologies: “smart bandages” that actively promote wound healing by manipulating bioelectric signals.

To understand smart bandages, we first need to understand the basics of wound healing. When you get a cut or a burn, your body initiates a complex cascade of events to repair the damage. This process involves:

  1. Hemostasis: Stopping the bleeding (blood clotting).
  2. Inflammation: Immune cells rush to the site to fight infection and clear debris.
  3. Proliferation: New cells are generated to fill the gap in the tissue.
  4. Remodeling: The new tissue is reorganized and strengthened, eventually forming a scar.

This process, while amazing, isn’t perfect. Sometimes, wounds don’t heal properly, leading to chronic ulcers (like diabetic foot ulcers). Other times, healing results in excessive scarring, which can be disfiguring and impair function.

Here’s where bioelectricity comes in. It turns out that natural electrical fields are generated at wound sites, and these fields play a critical role in coordinating the healing process. These aren’t the fast action potentials of nerves; these are the slower, steady-state voltage gradients that we’ve discussed throughout the course. Think back to our analogies – they’re like the constant power supplied by a city’s electrical grid, guiding the repair work, or even being part of that repair work!

Here’s how it works:

  • Damaged cells leak ions: When cells are injured, their membranes become leaky, allowing ions to flow out. This creates a difference in ion concentration between the wound site and the surrounding tissue.
  • Electric field generated: This ion flow generates an electric field, with the wound site typically becoming negative relative to the surrounding tissue.
  • Cells respond to the field: Cells, particularly those involved in wound healing (like fibroblasts, keratinocytes, and immune cells), are sensitive to electric fields. They can sense the direction and strength of the field and migrate towards or away from it. This process is called galvanotaxis or electrotaxis.
  • Cell behavior is altered: The electric field can also influence cell proliferation (division), differentiation (becoming specialized cell types), and the production of extracellular matrix (the structural scaffolding of tissues).

In essence, the wound’s bioelectric field acts as a signal that tells cells where to go and what to do to repair the damage. It’s like a natural “SOS” signal combined with a blueprint for reconstruction.

So, what happens if this natural bioelectric signal is disrupted? Studies have shown that:

  • Blocking ion channels: Interfering with the flow of ions (e.g., by using drugs that block specific ion channels) can impair wound healing.
  • Applying external electric fields: Conversely, applying an external electric field to a wound can accelerate healing.
  • Chronic wounds often have abnormal bioelectric patterns: Wounds that fail to heal (like diabetic ulcers) often have disrupted electrical fields.

This brings us to the concept of “smart bandages.” These are not your typical adhesive strips. They are advanced wound dressings that are designed to actively modulate the bioelectric environment of the wound to promote healing. They can do this in several ways:

  1. Conductive Bandages: These bandages are made of materials that can conduct electricity. They can be connected to a small power source to deliver a controlled electric current to the wound. This can mimic or enhance the natural electric field, guiding cell migration and promoting tissue regeneration.
  2. Ion Channel Modulating Bandages: These bandages release drugs or other compounds that specifically target ion channels. For example, a bandage might release a drug that opens potassium channels, increasing the outflow of potassium ions and making the wound more negative. This could attract cells to the wound site. Conversely, a bandage could release drugs like amiloride that block other ion channels, and modify existing gradients. The possibilities and complexities given by many different possible combinations, each performing specific functions, becomes very high and a target for future understanding.
  3. Piezoelectric Bandages: These bandages contain materials that generate electrical signals in response to mechanical pressure. For example, when the patient moves, the bandage could be designed to stretch or compress, generating a small electric current. This could provide a way to stimulate wound healing without needing an external power source.
  4. Biochemical-Releasing Bandages: While not strictly bioelectric, some smart bandages combine electrical stimulation with the controlled release of biochemical factors that promote healing. These might include growth factors (proteins that stimulate cell growth and division), anti-inflammatory drugs, or antimicrobial agents. These may also target key biomolecules involved in ion transport.

A powerful example, demonstrated by Levin, and introduced in Lesson 18 on Frog limb Regeneration is the Biodome. This represented a type of bandage that has both material qualities (in providing protection from mechanical injury, dehydration, or infection, similar in these ways to stitching/staples/dressings) – and drug delivery. The bioelectric drugs that the Biodome delivered showed amazing effect, as tadpoles could regenerate amputated limbs after *only a single 24 hours.* The device, placed on the tissue, allowed for an environment to be present: the frog limb that had a new type of growth that had previously been deemed unable to generate again (once the animal has grown to a specific time, frog limbs would not re-grow!)

Let’s consider some specific examples of how these different types of smart bandages might target different aspects of wound healing:

  • Cell migration: A bandage that creates a negative electric field at the wound center could attract cells from the surrounding tissue, accelerating the closure of the wound.
  • Cell proliferation: A bandage that releases growth factors and provides electrical stimulation could synergistically promote cell division, leading to faster tissue regeneration.
  • Inflammation control: A bandage that releases anti-inflammatory drugs and modulates ion channels could reduce excessive inflammation, which can hinder healing and contribute to scarring.
  • Scar reduction: By carefully controlling the bioelectric environment, it might be possible to promote regenerative healing (restoring the original tissue structure) rather than scar formation (which is a less organized, fibrous tissue).
    • It is often true, from burns to deep cuts, that an injury will close and heal as a form of scar. Scar tissue is a very poor copy; often is a mix of cell types, lacks the original cell and tissue polarity, and results in poor texture and visual appearence.
    • For many wounds, preventing scars by targeting ion flows and key transcription factor, that in effect regenerates tissue.

The potential applications of smart bandages are vast:

  • Chronic wounds: Diabetic ulcers, pressure sores, venous ulcers – these are often very difficult to heal and can lead to serious complications.
  • Burns: Smart bandages could accelerate healing, reduce scarring, and prevent infection.
  • Traumatic injuries: Gunshot wounds, lacerations, crush injuries – these could benefit from faster and more complete healing.
  • Surgery: Applying smart bandages after surgery could improve healing, reduce scarring, and speed up recovery.
  • Limb regeneration: Perhaps most exciting, is not simple the speeding-up of injuries/tissue restoration: new approaches open the potential to regrow whole complex tissues such as whole fingers, limbs, and tails!

It’s important to emphasize that this is a rapidly developing field. While many of these technologies are still in the experimental stage, clinical trials are underway, and some smart bandages are already starting to become available. This isn’t just science fiction; it’s a real and growing area of medical innovation.

Beyond wound healing, the principles behind smart bandages – manipulating bioelectric signals to control cell behavior – have even broader implications. As we’ve seen with Xenobots, and in the discussion of regenerative medicine, bioelectricity offers a powerful way to control not just repair, but also growth and form. This opens up the possibility of using bioelectric interventions to treat birth defects, regenerate lost limbs or organs, and even reshape tissues for cosmetic or reconstructive purposes.


Michael Levin Bioelectricity 101 Crash Course Lesson 33: Smart Bandages: Bioelectric Wound Healing Technologies Quiz

1. Which of the following is NOT a typical stage of wound healing?

A) Hemostasis
B) Inflammation
C) Mutation
D) Proliferation
E) Remodeling

2. What is the role of endogenous bioelectric signals in wound healing?

A) They have no role; wound healing is purely a chemical process.
B) They attract immune cells to the site of infection.
C) They guide cell migration, proliferation, and differentiation.
D) They cause blood clotting.

3. What typically happens to the electrical potential at a wound site?

A) It becomes more positive.
B) It becomes more negative.
C) It remains unchanged.
D) It oscillates rapidly.

4. What is galvanotaxis (or electrotaxis)?

A) The movement of cells in response to an electric field.
B) The formation of a blood clot.
C) The release of growth factors from cells.
D) The process of scar formation.

5. What is a “smart bandage”?

A) A bandage that can dispense pain medication.
B) A bandage that changes color to indicate infection.
C) A bandage that actively modulates bioelectric signals to promote healing.
D) A bandage made of a very strong, durable material.

6. Which is a method NOT used by bioelectric bandages?

A) By use of a conductive material.
B) Delivering ion channel modifying compounds to the tissues
C) Creating pressure differentials
D) Generating small electric currents in response to motion.

7. How might a smart bandage promote cell migration to a wound?

A) By releasing antibiotics.
B) By creating a negative electric field at the wound center.
C) By absorbing excess fluid.
D) By applying pressure to the wound.

8. How could a smart bandage potentially reduce scarring?

A) By promoting inflammation.
B) By encouraging the formation of disorganized fibrous tissue.
C) By guiding regenerative healing instead of scar formation.
D) By blocking all cell migration.

9. Which is the best way to summarize how Smart Bandages works?

A) Delivers electicity, via a conductive material.
B) Influences electric and ion channels.
C) Provides key proteins that can kick-start repair or regenerative processes.
D) All of the Above.

10. What is the Biodome and its function, used in experiments by Micheal Levin and others?

A) Delivers proteins and chemicals that influence ion channel opening, over short durations of exposure (such as a day or so), triggering a regeneration pathway.
B) Encloses wounds or ampuated limb area in frogs/tadpoles.
C) Contains seretonin, acting as an important ion channel.
D) All of the Above.

11. What type of limb injury are examples of targets by smart bandages?

A) Loss of Limbs.
B) Burns
C) Diabetic Ulcers.
D) All of the Above

12. Which of the following is NOT a potential application of smart bandage technology?

A) Treating chronic wounds
B) Improving surgical outcomes
C) Curing genetic diseases
D) Accelerating burn healing

13. True or False: The principles behind smart bandages could potentially be used for regenerative medicine beyond wound healing.

A) True
B) False

14. What is the typical voltage difference created, from damage tissue in frogs?

A) 1-10 mV.
B) 10-30 mV.
C) 40-80 mV.
D) 100 mV+.

15. How might electrical signals produced by smart bandages affect a cells cytoskeletal function?

A) Make key ion channel arrangements occur.
B) Create specific transport of cell components.
C) Modify structure
D) All of the Above.

16. True or false: Smart Bandages target *only* tissue repair of skin cells, because it needs a sufficient conductive surface

A) True
B) False

17. The “master regulator” of wound regeneration by means of voltage difference across tissues can be said to be…?

A) Gap junctions.
B) Ion Channels.
C) Action Potential signaling
D) B and C

18. True/False: A single and short dose/pulse is enough to trigger full and complete repair of an entire limb.

A) True.
B) False.

19. The main advantage of using bioelectric signal stimulating healing bandages and future medicine in general is:

A) Less need to make new pharaceutical chemicals, because we can rely more on voltage effects.
B) It is always better than mechanical tools, such as staples and stitches, in closing injuries
C) It opens avenues to guide or even re-shape existing growth/healing to desired outcomes
D) None of the Above

20. Bioelectric “smart bandages” are currently in wide use for:

A) Human wound treatment
B) Amputation and serious injury regeneration in humans
C) Improving success rates in surgery.
D) None of the above.


Michael Levin Bioelectricity 101 Crash Course Lesson 33: Smart Bandages: Bioelectric Wound Healing Technologies Answer Sheet

1. C

2. C

3. B

4. A

5. C

6. C

7. B

8. C

9. D

10. D

11. D

12. C

13. A

14. B

15. D

16. B

17. D

18. A

19. C

20. D


迈克尔·莱文 生物电 101 速成课程 第33课:智能绷带:生物电伤口愈合技术 摘要

  • 伤口愈合是一个复杂的过程,涉及细胞迁移、增殖、分化和组织重塑。
  • 内源性生物电信号(天然电场和电压梯度)在协调伤口愈合中起着至关重要的作用。
  • 这些生物电信号的破坏会损害愈合,导致慢性伤口或过度疤痕形成。
  • “智能绷带”是一类新型伤口敷料,可主动调节生物电信号以促进更快更好的愈合。
  • 这些绷带可以通过多种机制发挥作用:
    • 导电材料: 将电流直接输送到伤口。
    • 离子通道调节剂: 释放打开或阻断特定离子通道的药物或其他化合物。
    • 压电材料: 响应机械压力(例如,来自运动)产生电信号。
    • 生化物质递送: 以空间和时间控制的方式释放生长因子或其他信号分子。
  • Biodome(包括百忧解,一种血清素再摄取抑制剂)代表了一种新的药物输送形式,具有与缝合线等传统方法相似的一些功能。
  • “智能绷带”可以针对伤口愈合的不同方面:
    • 细胞迁移: 引导细胞到伤口部位。
    • 细胞增殖: 刺激细胞分裂以填补缺口。
    • 炎症控制: 减少可能阻碍愈合的过度炎症。
    • 减少疤痕: 促进再生性愈合而不是疤痕形成。
  • 这项技术为治疗各种伤口(包括烧伤、糖尿病溃疡和外伤)带来了巨大的希望。 它还可以改善手术效果。
  • 这种类型的治疗不仅仅是治疗损伤和感染; 生物电疗法具有更高的潜力,例如再生整个肢体,甚至将结构重塑为更理想的形状。

迈克尔·莱文 生物电 101 速成课程 第33课:智能绷带:生物电伤口愈合技术

在整个课程中,我们已经看到生物电不仅仅是生命的副作用,而且是塑造发育、再生和细胞行为的强大力量。 现在,我们将探索如何将这些知识应用于创造革命性的新医疗技术:“智能绷带”,它通过操纵生物电信号来主动促进伤口愈合。

要了解智能绷带,我们首先需要了解伤口愈合的基础知识。 当你割伤或烧伤时,你的身体会启动一系列复杂的事件来修复损伤。 这个过程涉及:

  1. 止血: 止血(凝血)。
  2. 炎症: 免疫细胞涌向该部位以对抗感染并清除碎屑。
  3. 增殖: 产生新细胞以填补组织中的缺口。
  4. 重塑: 新组织被重组和加强,最终形成疤痕。

这个过程虽然很神奇,但并不完美。 有时,伤口无法正常愈合,导致慢性溃疡(如糖尿病足溃疡)。 其他时候,愈合会导致过度疤痕形成,这可能会毁容并损害功能。

这就是生物电发挥作用的地方。 事实证明,伤口部位会产生天然电场,这些电场在协调愈合过程中起着关键作用。 这些不是神经的快速动作电位; 这些是我们在整个课程中讨论过的较慢的稳态电压梯度。 回想一下我们的类比——它们就像城市电网提供的持续电力,引导修复工作,甚至成为修复工作的一部分!

以下是它的工作原理:

  • 受损细胞泄漏离子: 当细胞受伤时,它们的细胞膜会变得有渗漏性,允许离子流出。 这会在伤口部位和周围组织之间产生离子浓度差异。
  • 产生电场: 这种离子流会产生电场,伤口部位相对于周围组织通常变为
  • 细胞对电场做出反应: 细胞,特别是那些参与伤口愈合的细胞(如成纤维细胞、角质形成细胞和免疫细胞),对电场很敏感。 它们可以感知电场的方向和强度,并向其迁移或远离它。 这个过程称为趋电性电趋性
  • 细胞行为被改变: 电场也会影响细胞增殖(分裂)、分化(成为特殊类型的细胞)和细胞外基质(组织的结构支架)的产生。

本质上,伤口的生物电场充当信号,告诉细胞去哪里以及做什么来修复损伤。 这就像一个天然的“SOS”信号与重建蓝图相结合。

那么,如果这种天然的生物电信号被破坏会发生什么? 研究表明:

  • 阻断离子通道: 干扰离子流动(例如,通过使用阻断特定离子通道的药物)会损害伤口愈合。
  • 施加外部电场: 相反,对伤口施加外部电场可以加速愈合。
  • 慢性伤口通常具有异常的生物电模式: 无法愈合的伤口(如糖尿病溃疡)通常具有被破坏的电场。

这给我们带来了“智能绷带”的概念。 这些不是典型的胶带。 它们是先进的伤口敷料,旨在主动调节伤口的生物电环境以促进愈合。 他们可以通过多种方式做到这一点:

  1. 导电绷带: 这些绷带由可以导电的材料制成。 它们可以连接到一个小型电源,以向伤口输送受控的电流。 这可以模拟或增强自然电场,引导细胞迁移并促进组织再生。
  2. 离子通道调节绷带: 这些绷带会释放专门针对离子通道的药物或其他化合物。 例如,绷带可能会释放一种打开钾通道的药物,增加钾离子的流出并使伤口更负。 这可以将细胞吸引到伤口部位。 相反,绷带可以释放像阿米洛利这样的药物来阻断其他离子通道,并改变现有的梯度。 许多不同可能的组合(每种组合都执行特定功能)带来的可能性和复杂性变得非常高,并且是未来理解的目标。
  3. 压电绷带: 这些绷带包含响应机械压力产生电信号的材料。 例如,当患者移动时,绷带可以设计成拉伸或压缩,从而产生小电流。 这可以提供一种无需外部电源即可刺激伤口愈合的方法。
  4. 生化物质释放绷带: 虽然不是严格意义上的生物电,但一些智能绷带将电刺激与促进愈合的生化因子的受控释放相结合。 这些可能包括生长因子(刺激细胞生长和分裂的蛋白质)、抗炎药或抗菌剂。 这些也可能针对参与离子转运的关键生物分子。

Levin 展示的一个强有力的例子,在关于青蛙肢体再生的第 18 课中介绍过,就是 Biodome。这代表了一种绷带类型,它既具有材料特性(在提供机械损伤、脱水或感染的保护方面,在这些方面类似于缝合/缝钉/敷料)——又具有药物输送功能。Biodome 提供的生物电药物显示出惊人的效果,因为蝌蚪可以在短短 24 小时后再生被截肢的肢体。 该装置放置在组织上,允许存在一个环境:青蛙肢体具有一种新型生长,以前被认为无法再次产生(一旦动物生长到特定时间,青蛙肢体就不会再生!)。

让我们考虑一下这些不同类型的智能绷带如何针对伤口愈合的不同方面的具体例子:

  • 细胞迁移: 在伤口中心产生负电场的绷带可以吸引来自周围组织的细胞,从而加速伤口的闭合。
  • 细胞增殖: 释放生长因子提供电刺激的绷带可以协同促进细胞分裂,从而加快组织再生。
  • 炎症控制: 释放抗炎药调节离子通道的绷带可以减少过度炎症,这会阻碍愈合并导致疤痕形成。
  • 减少疤痕: 通过仔细控制生物电环境,有可能促进再生性愈合(恢复原始组织结构)而不是疤痕形成(这是一种不太有组织的纤维组织)。
    • 通常情况下,从烧伤到深度割伤,损伤都会闭合和愈合,形成一种疤痕。 疤痕组织是一个非常差的副本; 通常是混合细胞类型,缺乏原始细胞和组织极性,导致质地和外观不佳。
    • 对于许多伤口,通过靶向离子流和关键转录因子来防止疤痕形成,实际上可以再生组织。

智能绷带的潜在应用是巨大的:

  • 慢性伤口: 糖尿病溃疡、压疮、静脉溃疡——这些通常很难愈合,并可能导致严重的并发症。
  • 烧伤: 智能绷带可以加速愈合、减少疤痕并防止感染。
  • 外伤: 枪伤、撕裂伤、挤压伤——这些都可以从更快更完全的愈合中受益。
  • 手术: 手术后应用智能绷带可以改善愈合、减少疤痕并加快恢复速度。
  • 肢体再生: 也许最令人兴奋的不仅仅是加速损伤/组织恢复:新方法开启了再生整个复杂组织(如整个手指、四肢和尾巴)的可能性!

需要强调的是,这是一个快速发展的领域。 虽然其中许多技术仍处于实验阶段,但临床试验正在进行中,一些智能绷带已经开始上市。 这不仅仅是科幻小说; 这是医学创新的一个真实且不断发展的领域。

除了伤口愈合之外,智能绷带背后的原理——操纵生物电信号来控制细胞行为——具有更广泛的意义。 正如我们在 Xenobots 中看到的,以及在再生医学的讨论中,生物电提供了一种控制不仅仅是修复,还有生长形态的强大方法。 这开启了使用生物电干预来治疗出生缺陷、再生失去的肢体或器官,甚至重塑组织以用于美容或重建目的的可能性。


迈克尔·莱文 生物电 101 速成课程 第33课:智能绷带:生物电伤口愈合技术 小测验

1. 以下哪一项不是伤口愈合的典型阶段?

A) 止血
B) 炎症
C) 突变
D) 增殖
E) 重塑

2. 内源性生物电信号在伤口愈合中的作用是什么?

A) 它们没有作用; 伤口愈合纯粹是一个化学过程。
B) 它们将免疫细胞吸引到感染部位。
C) 它们引导细胞迁移、增殖和分化。
D) 它们会导致血液凝固。

3. 伤口部位的电位通常会发生什么变化?

A) 它变得更正。
B) 它变得更负。
C) 它保持不变。
D) 它会快速振荡。

4. 什么是趋电性(或电趋性)?

A) 细胞响应电场而运动。
B) 血凝块的形成。
C) 细胞释放生长因子。
D) 疤痕形成的过程。

5. 什么是“智能绷带”?

A) 可以分配止痛药的绷带。
B) 变色以指示感染的绷带。
C) 主动调节生物电信号以促进愈合的绷带。
D) 由非常坚固耐用的材料制成的绷带。

6. 哪种方法不是生物电绷带使用的方法?

A) 通过使用导电材料。
B) 向组织输送离子通道修饰化合物
C) 产生压差
D) 响应运动产生小电流。

7. 智能绷带如何促进细胞迁移到伤口?

A) 通过释放抗生素。
B) 通过在伤口中心产生负电场。
C) 通过吸收多余的液体。
D) 通过对伤口施加压力。

8. 智能绷带如何可能减少疤痕?

A) 通过促进炎症。
B) 通过鼓励形成无组织的纤维组织。
C) 通过引导再生性愈合而不是疤痕形成。
D) 通过阻止所有细胞迁移。

9. 哪种方式最能概括智能绷带的工作原理?

A) 通过导电材料输送电力。
B) 影响电和离子通道。
C) 提供可以启动修复或再生过程的关键蛋白质。
D) 以上都是。

10. Biodome 是什么及其功能,在 Micheal Levin 等人的实验中使用?

A) 输送影响离子通道开放的蛋白质和化学物质,在短时间内暴露(例如一天左右),触发再生途径。
B) 包裹青蛙/蝌蚪的伤口或截肢区域。
C) 含有血清素,充当重要的离子通道。
D) 以上都是。

11. 肢体损伤的哪些类型是智能绷带的目标?

A) 肢体缺失。
B) 烧伤
C) 糖尿病溃疡。
D) 以上都是

12. 以下哪一项不是智能绷带技术的潜在应用?

A) 治疗慢性伤口
B) 改善手术效果
C) 治愈遗传疾病
D) 加速烧伤愈合

13. 对或错:智能绷带背后的原理可能用于伤口愈合以外的再生医学。

A) 对
B) 错

14. 青蛙受损组织产生的典型电压差是多少?

A) 1-10 mV.
B) 10-30 mV.
C) 40-80 mV.
D) 100 mV+.

15. 智能绷带产生的电信号如何影响细胞的细胞骨架功能?

A) 进行关键的离子通道排列。
B) 产生细胞成分的特定运输。
C) 修改结构
D) 以上都是。

16. 对或错:智能绷带针对皮肤细胞的组织修复,因为它需要足够的导电表面

A) 对
B) 错

17. 可以说通过组织上的电压差来控制伤口再生的“主要调节器”是……?

A) 间隙连接。
B) 离子通道.
C) 动作电位信号
D) B 和 C

18. 对/错:单一且短剂量的/脉冲足以触发整个肢体的完全修复。

A) 对。
B) 错。

19. 使用生物电信号刺激愈合绷带和未来医学的主要优势是:

A) 减少制造新药物化学品的需要,因为我们可以更多地依赖电压效应。
B) 它在闭合伤口方面总是优于缝合线和缝钉等机械工具
C) 它开辟了引导甚至重塑现有生长/愈合以达到预期结果的途径
D) 以上都不是

20. 生物电“智能绷带”目前广泛用于:

A) 人类伤口治疗
B) 人类的截肢和严重损伤再生
C) 提高手术成功率.
D) 以上都不是。


迈克尔·莱文 生物电 101 速成课程 第33课:智能绷带:生物电伤口愈合技术 答案表

1. C

2. C

3. B

4. A

5. C

6. C

7. B

8. C

9. D

10. D

11. D

12. C

13. A

14. B

15. D

16. B

17. D

18. A

19. C

20. D