Michael Levin Bioelectricity 101 Crash Course Lesson 22: Bioelectricity as Software: Beyond Genes in Body Shaping Summary
- This lesson introduces the central metaphor of bioelectricity as the “software” that controls the “hardware” (DNA) of the body.
- The traditional view in biology emphasizes DNA as the primary determinant of biological form (morphogenesis). This is the “hardware-centric” view.
- Levin’s work and the broader field of bioelectricity demonstrate that DNA provides the building blocks (proteins) but that bioelectric signals provide the crucial spatial organization and dynamic control of those blocks. This is the “software” layer.
- Bioelectric signals (membrane potentials, voltage gradients, gap junction communication) act as a kind of information-processing system. They don’t just carry energy; they carry information about the desired body plan (the “target morphology”).
- This information is dynamic and rewritable. It can be altered by manipulating bioelectric signals, leading to changes in anatomical outcomes.
- Examples:
- Two-headed planaria: Changing the bioelectric “software” leads to a stable change in body plan without altering the DNA.
- Frog limb regeneration: A brief bioelectric “kickstart” can initiate a complex regenerative process, suggesting the activation of a dormant “program.”
- Electric face: Bioelectric pre-patterns predict and shape facial development before gene expression changes occur.
- Melanoma reversal: Normalizing bioelectric signals can reprogram cancer cells to behave more normally.
- HCN2 rescue: Altering a single ion channel (a “software” change) can compensate for a genetic defect (“hardware” problem).
- The “software” analogy highlights the programmability of biological systems. We might be able to control development, regeneration, and even cancer by manipulating the bioelectric “code.”
- This is not to say that genes are unimportant, but rather that bioelectricity is a crucial, independent layer of control that interacts with and regulates gene expression.
- The memory storage / pattern information stored thus includes biophysical, ionic and voltage data. This isn’t an approach traditionally/commonly discussed inside biological models
Michael Levin Bioelectricity 101 Crash Course Lesson 22: Bioelectricity as Software: Beyond Genes in Body Shaping
We’ve been on a journey through the fascinating world of bioelectricity, exploring its roles in development, regeneration, and even cancer. Now, it’s time to solidify a central concept, a paradigm shift that is revolutionizing our understanding of how living organisms are built and maintained: bioelectricity as software.
For decades, biology has been dominated by a gene-centric view. The prevailing idea has been that DNA, the genetic code, is the primary determinant of biological form. DNA contains the instructions for building all the proteins that make up cells and tissues, and changes in DNA (mutations) are thought to be the main driving force behind evolutionary change and disease. This can be thought the dominant, conventional “hardware” approach.
This gene-centric view is undoubtedly powerful and has led to countless breakthroughs. But, as we’ve seen throughout this course, it’s incomplete. It’s like understanding the hardware of a computer – the processor, the memory, the circuits – without understanding the software that makes it all work. There exists, now demonstrably with proofs, another mechanism at work on the level of cells: patterns among many cells’ bioelectric activity and connection which acts to instruct and enable morphogenesis: voltage and connectivity-level instructions.
This is where the “bioelectricity as software” analogy, championed by Michael Levin, comes in. It provides a powerful new way to think about how biological form (morphogenesis) is controlled.
Think again about a computer. The hardware (chips, wires, etc.) is essential, but it’s useless without software. The software is the set of instructions that tells the hardware what to do. It’s the information that gives the hardware function.
In a biological system:
- DNA is the hardware: It provides the basic components, the proteins, that make up cells and tissues. It’s the “parts list.”
- Bioelectricity is the software: It provides the high-level instructions, the spatial organization, and the dynamic control that turns those components into a living organism. It’s the “program” that tells the cells what to do, where to go, and what to become.
The crucial point here is that bioelectric signals are not just a byproduct of cellular activity; they are an active, information-bearing system. They don’t just carry energy; they carry information about the desired body plan (the “target morphology,” as we discussed in Lesson 14).
This information is encoded in:
- Membrane Potentials: The voltage differences across cell membranes.
- Voltage Gradients: The spatial patterns of voltage differences across tissues.
- Gap Junction Communication: The direct electrical and chemical coupling between cells.
- Ionic flows: Movement of “charged particles” (the ions).
These bioelectric signals create a dynamic “electrical landscape” that cells can sense and respond to. They provide positional cues, guiding cell migration, proliferation, differentiation, and even programmed cell death (apoptosis). They act as a kind of “coordinate system” that helps cells organize themselves into the correct structures.
What makes this a “software” analogy, and not just another “hardware” analogy? Several key features:
- Dynamic: The bioelectric “software” is not static; it changes over time, responding to cues from the environment and from the developing organism itself. It’s like a program that adapts and modifies itself as it runs.
- Rewritable: The bioelectric “software” can be altered by external interventions (drugs, electrical stimulation, etc.), leading to changes in the final anatomical outcome. It’s like reprogramming a computer to perform a different task.
- Informational: The bioelectric signals carry information about the desired body plan. They are not just random fluctuations; they are organized patterns that convey meaning to the cells.
- Error-Correcting: The system is robust to perturbations. It can often “correct” for errors and still achieve the target morphology, even in the presence of genetic defects or tissue damage. Like a sophisticated computer program, it has built-in “debugging” mechanisms.
Let’s revisit some of the key experiments we’ve discussed in previous lessons and see how the “bioelectricity as software” analogy applies:
- Two-Headed Planaria (Lessons 9, 10, 11): By blocking gap junctions, researchers rewrote the bioelectric “software” of the planarian, changing the target morphology from “one head, one tail” to “two heads.” This change was stable and heritable through subsequent regeneration, even though the DNA (the “hardware”) remained unchanged.
- Frog Limb Regeneration (Lessons 15, 16): A brief bioelectric “kickstart” (delivered by the BioDome) reactivated a dormant “limb regeneration program” in adult frogs, which normally don’t regenerate limbs. This is like booting up a specific piece of software on a computer. The “pulse” and subsequent frog tissues did not involve further intervention/control, after this initial intervention period, over their actions.
- Electric Face (Lesson 7): The “electric face” in frog embryos is a bioelectric pre-pattern that predicts the location of future facial features. This is like a software “template” that guides the development of the hardware. It appears before any chemical reactions in those location.
- Melanoma Reversal (Lessons 17, 18): Normalizing the bioelectric signals in melanoma cells (making their membrane potential more like that of normal cells) can “reprogram” them, reducing their cancerous behavior. This is like fixing a bug in the software that was causing the cells to malfunction. This even works despite defects (in gene, from mutations, causing “selfish/amoeba”-like tendencies for local cells).
- HCN2 Rescue (Lessons 20, 21): Overexpressing the HCN2 ion channel (a “software” change) could compensate for a genetic defect (a “hardware” problem) in frog embryos, rescuing brain development. This is like patching a software vulnerability to prevent a system crash.
These experiments all demonstrate that bioelectricity is not just a passive bystander in biological processes. It’s an active, instructive force that can control cell behavior and shape anatomical outcomes. It’s the “software” that runs on the “hardware” of the genome. The level, across different layers and parts (between ion channel functions and the global configurations), are remarkably integrated and with mechanisms (computational in nature).
The “bioelectricity as software” analogy also highlights the programmability of biological systems. If we can learn to “read” and “write” the bioelectric code, we might be able to:
- Design new body structures: Imagine programming cells to build artificial organs or tissues.
- Stimulate regeneration: Induce the regrowth of lost limbs or organs in humans.
- Treat diseases: Correct developmental defects, reverse cancer, and even prevent aging.
This is a bold vision, and it’s still a long way from becoming reality. But the rapidly growing field of bioelectricity is providing us with the tools and the conceptual framework to start exploring these possibilities.
It’s crucial to emphasize that this “software” view does not mean that genes are unimportant. DNA is still the fundamental blueprint for building the basic components of life. But bioelectricity is a crucial, independent layer of control that interacts with and regulates gene expression. It’s a dynamic, adaptable, and programmable system that gives living organisms their remarkable ability to develop, regenerate, and adapt to their environment. The “missing blueprint” can be located and found on that software-based “pattern-setting, homeostatis-drive voltage field”. This operates at cellular and cell-cell-networks, tissue-tissue. It enables “memory”, which acts to guide how organism grows, including and especially during the regeneration, the re-construction, recovery of tissue-loss or malformed configuration.
It’s like saying hardware and circuit components do not make system by themselves. The software program/application layers contribute important capabilities, even setting outcomes and influencing what, how underlying computer processes those requests to perform tasks and maintain/operate to some standards, specifications.
Michael Levin Bioelectricity 101 Crash Course Lesson 22: Bioelectricity as Software: Beyond Genes in Body Shaping Quiz
1. What is the central metaphor introduced in this lesson to describe the role of bioelectricity?
A) Bioelectricity as the “engine” of the cell.
B) Bioelectricity as the “wiring” of the body.
C) Bioelectricity as the “software” that controls the “hardware” (DNA) of the body.
D) Bioelectricity as the “fuel” that powers life.
2. Which of the following best describes the traditional view of how biological form is determined?
A) Bioelectric signals are the primary determinants of form.
B) DNA is the primary determinant, with bioelectricity playing a secondary role.
C) Form is determined solely by environmental factors.
D) Form is random and unpredictable.
3. Which is an example and/or set of principles, often at systems that we describe being a part inside (or feature) for living creatures.
A) “Memory”, such as for how Planaria body restores it to one (and also even the modified and new “target”: for instance double head, via intervention like what Levin experiments demonstrate so powerfully).
B) Bioelectric activity like voltages (potential across membranes in a tissue) as control system for anatomical growth (and maintenance).
C) The patterns of ionic currents flow for directing migration or setting various processes that follow (or set) instructions at the “network” of cells.
D) All of the above!
4. According to the “bioelectricity as software” analogy, what does DNA primarily provide?
A) The high-level instructions for organizing the body.
B) The dynamic control of cell behavior.
C) The spatial organization of tissues and organs.
D) The basic components (proteins) that make up cells and tissues.
5. Which of the following is NOT an example of a bioelectric signal?
A) Membrane potentials.
B) Voltage gradients.
C) Gap junction communication.
D) The sequence of DNA bases.
6. True/False Membrane potentials involve ion channel, a critical feature on living cells.
A) True
B) False
7. What capabilities of cells do Voltage gradients inside/across/between tissues highlight.
A) They may act and guide cell decisions using cues that’s outside its typical and single-“unit” level and type of considerations and factors, for its behavior
B) Cell may respond in a collective or interconnected and interacting as group
C) It acts with plasticity
D) All of the above.
8. What properties characterize the bioelectric “software”?
A) It is static and unchanging.
B) It is dynamic and rewritable.
C) It is encoded directly in the DNA sequence.
D) It is only important in the nervous system.
9. How did planarian demonstrate and prove presence and importance on target morphlogy.
A) Head-vs-tail choices during regeneration
B) Capacity to keep growing correct parts with “information stored” to retain memory (for bio-software vs hardcoded DNA instructions)
C) Multiple (2) or, absence, of those parts and other configurations that differ greatly against their standard shape.
D) All of the above
10. What did experiments altering frogs using short term interventions indicate
A) That genetic (DNA based only) is final, decisive signals
B) That limbs could start re-growth using just physical stimulations.
C) A “blueprint” software-based control that acts to direct cell, beyond genes, play major roles and contributions!
D) No indication or effects
11. The famous and foundational frog experiment involving the detection (using, again, what technique….?) during embryonic (i.e.: young, newly growing organisms, in this particular research case). What signal “shows up” as the earliest and what function is served.
A) No technique to measure voltage change dynamically existed yet
B) “Electric Face” (revealing structure/patterns). These voltages indicate cells fate for what would soon show and emerge. It offers a kind of “goal setting” even before physical (phenotype) body patterns start becoming evident
C) Voltage gradient studies that could give way and inform the shape (or not).
D) Voltage alone provide those.
12. What concept could two-headedness indicate and demonstrate that genes lack.
A) Pattern memory.
B) Capacity to regrow the new body without external manipulation
C) That genetics only offer 1 and only fixed configurations.
D) A and B only
13. If bioelectric (ion flow) disruption can have dramatic anatomical alterations, would there exist mechanisms and “technology”, and also concepts/tools that scientists could design:
A) The Bio-dome helps establish controlled chemical environments, plus more recent advanced and precise microfluidics capabilities offer ways, even to induce gradients and setting of these signals via bioelectrical controls.
B) It isn’t controllable or designable (with modern research/technology know how) and science would need more, different way to enable such future capability
C) Ion concentration setting, and setting of “Voltage gradient”.
D) All of the above. A and C are especially critical to note (while choice B isn’t wrong)!
14. When considering a drug or set of medicine/therapies/chemical substances designed specifically to restore a pattern, rather than single gene targeting like traditional pharma, what capabilities would result.
A) Only control, but never “induce” change (with new configurations or different “goals”).
B) Multiple genes can happen only after changing those DNA using CRIPSR/genetic tool.
C) It will create ways to allow multiple states of bio-electric configuration for inducing morphogenesis: construction, change, correction of (faulty) anatomical outcomes, which may help to recover/address disease treatment like those we learned about: cancerous tumours, traumatic injury, or failure to build correct body structures like frog experiment with missing brains or “misplaced” (in the gut or skin, which turned to other organ/part-of-bodies!).
D) No real effects that we can expect, since bioelectric levels don’t operate much.
15. True or False: Bioelectricity adds, influences to direct where growth may arise and change.
A) Yes. It signals and triggers body formation at cell level.
B) No
16. Which best indicate properties/attribute for setting or controlling how bioelectricity enables regeneration and construction of Planaria (using, if desired, any of past/earlier experiments):
A) Ability to keep consistent shapes (“blueprint”) and resisting against deviation
B) Capacity to regrow (“goal directed” toward that outcome), with no external guidance or ongoing, continuous instructions.
C) “Memory” holding data.
D) All of the above!
17. How does the “software” analogy apply to the two-headed planaria experiment?
A) The DNA (hardware) was changed, leading to a different outcome.
B) The bioelectric signals (software) were changed, leading to a different outcome, without altering the DNA.
C) The environment was changed, leading to a different outcome.
D) The experiment had no effect on the planaria.
18. What does the “programmability” of biological systems, highlighted by the bioelectricity as software concept, suggest?
A) We might be able to control development and regeneration by manipulating bioelectric signals.
B) Biological systems are not programmable.
C) Genetic engineering is the only way to control biological systems.
D) Bioelectricity is not relevant to biological programming.
19. How does bio-electric patterns, via, typically voltage values setting membrane ion pumps and “gap” channels in their activities contribute to the formation/repair/etc on cells.
A) The signal does influence cellular level changes alongside DNA level programming.
B) Via multiple mechanisms with multiple pathways including cells working toward building entire new region.
C) Those mechanisms we have been studying over these lessons and, now, also the key (concept, metaphor/view): software that directs morphogenesis, as in the examples presented in several contexts/animals.
D) All of the above
20. Bioelectricity is best summarized as (for its potential and significance):
A) Playing key, foundational roles during creation.
B) Adding new capability over conventional methods used at pharmaceutical companies.
C) Providing software capabilities (blueprint setting, information, signalling and communication between regions that could span even entire bodies).
D) All of the above.
Michael Levin Bioelectricity 101 Crash Course Lesson 22: Bioelectricity as Software: Beyond Genes in Body Shaping Answer Sheet
1. C
2. B
3. D
4. A
5. D
6. A
7. D
8. B
9. D
10. C
11. B
12. D
13. D
14. B
15. D
16. D
17. B
18. A
19. D
20. D
迈克尔·莱文 生物电 101 速成课程 第二十二课:生物电作为软件:超越基因的身体塑造 摘要
- 本课介绍了生物电作为控制身体“硬件”(DNA) 的“软件”的核心比喻。
- 生物学的传统观点强调 DNA 是生物形态(形态发生)的主要决定因素。 这就是“以硬件为中心”的观点。
- 莱文的工作和更广泛的生物电领域表明,DNA 提供了构建块(蛋白质),但生物电信号提供了这些块的关键空间组织和动态控制。 这是“软件”层。
- 生物电信号(膜电位、电压梯度、间隙连接通讯)充当一种信息处理系统。 它们不仅仅携带能量; 它们携带关于所需身体形态(“目标形态”)的信息。
- 这些信息是动态且可重写的。 它可以通过操纵生物电信号来改变,从而导致解剖结果的变化。
- 例子:
- 双头涡虫: 改变生物电“软件”会导致身体形态的稳定变化,而不会改变 DNA。
- 青蛙肢体再生: 短暂的生物电“启动”可以启动一个复杂的再生过程,表明激活了一个休眠的“程序”。
- 电面: 生物电预模式在基因表达变化发生之前预测和塑造面部发育。
- 黑素瘤逆转: 使生物电信号正常化可以将癌细胞重新编程为更正常的行为。
- HCN2 拯救: 改变单个离子通道(“软件”改变)可以补偿基因缺陷(“硬件”问题)。
- “软件”类比强调了生物系统的可编程性。 我们也许能够通过操纵生物电“代码”来控制发育、再生,甚至癌症。
- 这并不是说基因不重要,而是说生物电是一个关键的、独立的控制层,它与基因表达相互作用并调节基因表达。
- 因此存储的记忆存储/模式信息包括生物物理、离子和电压数据。 这不是生物模型中传统/常用的方法
迈克尔·莱文 生物电 101 速成课程 第二十二课:生物电作为软件:超越基因的身体塑造
我们一直在探索生物电的迷人世界,探索它在发育、再生甚至癌症中的作用。 现在,是时候巩固一个核心概念了,这是一个正在彻底改变我们对生物体如何构建和维持的理解的范式转变:生物电作为软件。
几十年来,生物学一直以基因为中心。 主流观点认为,DNA,即遗传密码,是生物形态的主要决定因素。 DNA 包含构建构成细胞和组织的所有蛋白质的指令,DNA 的变化(突变)被认为是进化变化和疾病背后的主要驱动力。 这可以被认为是占主导地位的、传统的“硬件”方法。
这种以基因为中心的观点无疑是强大的,并带来了无数的突破。 但是,正如我们在本课程中所看到的,它是不完整的。 这就像了解计算机的硬件——处理器、内存、电路——而不了解使这一切工作的软件。 现在已经有证据表明,在细胞水平上存在另一种机制:许多细胞的生物电活动和连接的模式,它们起到指导和实现形态发生的作用:电压和连接水平的指令。
这就是迈克尔·莱文倡导的“生物电作为软件”的类比的用武之地。 它提供了一种思考生物形态(形态发生)如何受控的强大新方法。
再想想电脑。 硬件(芯片、电线等)是必不可少的,但没有软件就毫无用处。 软件是告诉硬件做什么的一组指令。 正是信息赋予了硬件功能。
在生物系统中:
- DNA 是硬件: 它提供了构成细胞和组织的基本组成部分,即蛋白质。 它是“零件清单”。
- 生物电是软件:它提供高级指令、空间组织和动态控制,将这些组件转变为活的生物体。 它是告诉细胞做什么、去哪里以及变成什么的“程序”。
这里的关键点是,生物电信号不仅仅是细胞活动的副产品; 它们是一个主动的、承载信息的系统。 它们不仅仅携带能量; 它们携带有关所需身体计划的信息(“目标形态”,正如我们在第 14 课中讨论的那样)。
这些信息编码在:
- 膜电位: 细胞膜两侧的电压差。
- 电压梯度: 跨组织的电压差的空间模式。
- 间隙连接通讯: 细胞之间的直接电和化学耦合。
- 离子流:“带电粒子”(离子)的运动。
这些生物电信号创造了一个动态的“电景观”,细胞可以感知并做出反应。 它们提供位置线索,引导细胞迁移、增殖、分化,甚至程序性细胞死亡(细胞凋亡)。 它们充当一种“坐标系”,帮助细胞将自身组织成正确的结构。
是什么让这成为“软件”类比,而不仅仅是另一个“硬件”类比? 几个关键特征:
- 动态: 生物电“软件”不是静态的; 它会随着时间而变化,响应来自环境和发育中的生物体本身的线索。 它就像一个在运行时适应和修改自身的程序。
- 可重写: 生物电“软件”可以通过外部干预(药物、电刺激等)进行更改,从而导致最终解剖结果的变化。 这就像重新编程计算机以执行不同的任务。
- 信息性: 生物电信号携带有关所需身体计划的信息。 它们不仅仅是随机波动; 它们是向细胞传达意义的有组织的模式。
- 纠错: 该系统对扰动具有鲁棒性。 它通常可以“纠正”错误并仍然实现目标形态,即使存在基因缺陷或组织损伤。 就像一个复杂的计算机程序,它有内置的“调试”机制。
让我们回顾一下我们在之前的课程中讨论过的一些关键实验,看看“生物电作为软件”的类比是如何应用的:
- 双头涡虫(第 9、10、11 课): 通过阻断间隙连接,研究人员重写了涡虫的生物电“软件”,将目标形态从“一个头,一个尾巴”更改为“两个头”。 这种变化是稳定的,并且可以通过后续的再生遗传,即使 DNA(“硬件”)保持不变。
- 青蛙肢体再生(第 15、16 课): 短暂的生物电“启动”(由 BioDome 提供)重新激活了成年青蛙体内休眠的“肢体再生程序”,而成年青蛙通常不会再生肢体。 这就像在计算机上启动一个特定的软件。 在这个初始干预期之后,“脉冲”和随后的青蛙组织并没有涉及进一步的干预/控制。
- 电面(第 7 课): 青蛙胚胎中的“电面”是一种生物电预模式,可以预测未来面部特征的位置。 这就像一个指导硬件开发的软件“模板”。 它出现在这些位置的任何化学反应之前。
- 黑素瘤逆转(第 17、18 课): 使黑素瘤细胞中的生物电信号正常化(使它们的膜电位更像正常细胞)可以“重新编程”它们,减少它们的癌变行为。 这就像修复导致细胞故障的软件中的错误。 即使存在缺陷(基因中的突变,导致“自私/变形虫”般的细胞局部倾向),这仍然有效。
- HCN2 拯救(第 20、21 课): 过表达 HCN2 离子通道(“软件”更改)可以补偿青蛙胚胎中的基因缺陷(“硬件”问题),从而拯救大脑发育。 这就像修补软件漏洞以防止系统崩溃。
所有这些实验都表明,生物电不仅仅是生物过程中的被动旁观者。 它是可以控制细胞行为和塑造解剖结果的主动、指导力量。 它是在基因组“硬件”上运行的“软件”。 水平,跨越不同的层和部分(离子通道功能和全局配置之间),非常集成并且具有机制(本质上是计算)。
“生物电作为软件”的类比也突出了生物系统的可编程性。 如果我们能学会“读取”和“写入”生物电代码,我们也许能够:
- 设计新的身体结构: 想象一下对细胞进行编程以构建人造器官或组织。
- 刺激再生: 诱导人类失去的四肢或器官的再生。
- 治疗疾病: 纠正发育缺陷,逆转癌症,甚至预防衰老。
这是一个大胆的愿景,距离成为现实还有很长的路要走。 但快速发展的生物电领域正在为我们提供开始探索这些可能性的工具和概念框架。
强调这一点很重要,这个“软件”视图并不意味着基因不重要。DNA仍然是构建生命基本组成部分的根本蓝图. 但生物电是一个至关重要的、独立的控制层,它与基因表达相互作用并调节基因表达。它是一个动态的、适应性强的和可编程的系统,赋予了生物体非凡的发育,再生,和适应环境的能力. “缺失的蓝图”可以在基于软件的“模式设置、稳态驱动电压场”中找到和找到。 这在细胞和细胞网络、组织-组织中运行。 它使“记忆”成为可能,这有助于指导生物体如何生长,包括尤其是在再生、重建、恢复组织丢失或畸形配置期间。
这就像说硬件和电路元件本身并不能构成系统. 软件程序/应用层贡献了重要的功能, 甚至设定结果并影响底层计算机如何处理这些请求以执行任务并保持/操作到某些标准,规范.
迈克尔·莱文 生物电 101 速成课程 第二十二课:生物电作为软件:超越基因的身体塑造 小测验
1. 本课介绍的描述生物电作用的核心隐喻是什么?
A) 生物电作为细胞的“引擎”。
B) 生物电作为身体的“布线”。
C) 生物电作为控制身体“硬件”(DNA) 的“软件”。
D) 生物电作为生命的“燃料”。
2. 以下哪项最能描述生物形态是如何确定的传统观点?
A) 生物电信号是形态的主要决定因素。
B) DNA 是主要决定因素,生物电起次要作用。
C) 形态仅由环境因素决定。
D) 形态是随机的和不可预测的。
3. 哪些是例子和/或一系列原则,通常在系统中,我们将其描述为生物内部的一部分(或特征)。
A) “记忆”,例如涡虫身体如何将其恢复到一个(甚至修改和新的“目标”:例如双头,通过干预,如 Levin 实验所强烈证明的那样)。
B) 生物电活动,如电压(组织中膜上的电位)作为解剖生长(和维护)的控制系统。
C) 离子电流流动的模式,用于指导迁移或设置遵循(或设置)细胞“网络”中的指令的各种过程。
D) 以上都是!
4. 根据“生物电作为软件”的类比,DNA 主要提供什么?
A) 组织身体的高级指令。
B) 细胞行为的动态控制。
C) 组织和器官的空间组织。
D) 构成细胞和组织的基本组成部分(蛋白质)。
5. 以下哪一项不是生物电信号的例子?
A) 膜电位。
B) 电压梯度。
C) 间隙连接通讯。
D) DNA 碱基的序列。
6. 对/错 膜电位涉及离子通道,这是活细胞的一个关键特征。
A) 对
B) 错
7. 组织内部/之间/之间的电压梯度突出了细胞的哪些能力。
A) 它们可能行动并使用超出其典型和单一“单位”水平和类型的考虑和因素的线索来指导细胞决策,以了解其行为
B) 细胞可能作为一个集体或相互连接并相互作用的群体做出反应
C) 它具有可塑性
D) 以上都是。
8. 什么属性表征生物电“软件”?
A) 它是静态的和不变的。
B) 它是动态的和可重写的。
C) 它直接编码在 DNA 序列中。
D) 它只在神经系统中很重要。
9. 涡虫如何证明和证明目标形态的存在和重要性。
A) 再生过程中的头尾选择
B) 具有保持生长正确部分的能力,其中“存储的信息”以保留记忆(对于生物软件与硬编码的 DNA 指令)
C) 多个 (2) 或缺少这些部分以及与标准形状极大不同的其他配置。
D) 以上都是
10. 用短期干预改变青蛙的实验表明了什么
A) 遗传(仅基于 DNA)是最终的、决定性的信号
B) 仅通过物理刺激就可以开始肢体再生。
C) 作为指导细胞的“蓝图”软件,超越基因,发挥着重要作用和贡献!
D) 没有迹象或影响
11. 著名的和基础的青蛙实验涉及在胚胎(即:年轻的、新成长的生物体,在这个特定的研究案例中)期间的检测(再次使用什么技术……?)。 什么信号“出现”为最早的,起什么作用。
A) 还没有技术可以动态测量电压变化
B) “电面”(揭示结构/模式)。 这些电压表明细胞的命运是什么,很快就会显示和出现。 它提供了一种“目标设定”,甚至在物理(表型)身体模式开始变得明显之前
C) 电压梯度研究可以提供方法并告知形状(或不)。
D) 仅靠电压提供这些。
12. 双头性可以表明和证明什么基因缺乏的概念。
A) 模式记忆。
B) 即使没有外部操作也能再生新身体的能力
C) 遗传学仅提供 1 种且仅固定配置。
D) A 和 B
13. 如果生物电(离子流)中断会导致剧烈的解剖学改变,那么科学家是否可以设计机制和“技术”,以及概念/工具:
A) 生物穹顶有助于建立受控的化学环境,加上最近更先进和精确的微流体能力提供了方法,甚至可以通过生物电控制诱导梯度和设置这些信号。
B) 它不可控或不可设计(具有现代研究/技术知识),科学将需要更多不同的方法来实现这种未来的能力
C) 离子浓度设置,以及“电压梯度”的设置。
D) 以上都是。 A 和 C 尤其重要(虽然选项 B 不错)!
14. 当考虑专门设计用于恢复模式而不是像传统药物那样靶向单个基因的药物或一组药物/疗法/化学物质时,会产生什么能力。
A) 仅控制,但从不“诱导”变化(具有新的配置或不同的“目标”)。
B) 仅在改变 DNA 后使用 CRISPR/基因工具才能发生多基因。
C) 它将创造出允许生物电配置的多种状态以诱导形态发生的方法:构建、改变、纠正(错误的)解剖结果,这可能有助于恢复/解决疾病治疗,就像我们了解的那些:癌性肿瘤,外伤, 或未能构建正确的身体结构,如青蛙实验中缺失的大脑或“错位”(在肠道或皮肤中,变成其他器官/身体部位!)。
D) 没有我们可以期待的真正效果,因为生物电水平不起作用。
15. 对或错: 生物电会增加影响以指导可能出现和改变的生长方向。
A) 对。它发出信号并触发细胞水平的身体形成。
B) 错
16. 哪个选项最能说明特性/属性,用于设置或控制生物电如何实现再生和构建涡虫(如果需要,可以使用过去/早期的任何实验):
A) 保持一致形状(“蓝图”)并抵抗偏差的能力
B) 再生能力(“目标导向”),无需外部指导或持续的、持续的指示。
C) “记忆”保存数据。
D) 以上都是!
17. “软件”类比如何适用于双头涡虫实验?
A) DNA(硬件)被改变,导致了不同的结果。
B) 生物电信号(软件)被改变,导致了不同的结果,而没有改变 DNA。
C) 环境发生了变化,导致了不同的结果。
D) 实验对涡虫没有影响。
18. 生物电作为软件概念所强调的生物系统的“可编程性”表明了什么?
A) 我们也许能够通过操纵生物电信号来控制发育和再生。
B) 生物系统是不可编程的。
C) 基因工程是控制生物系统的唯一方法。
D) 生物电与生物编程无关。
19. 生物电模式如何通过通常的电压值来设置膜离子泵和“间隙”通道的活动,从而影响细胞的形成/修复/等?
A) 信号确实会影响细胞水平的变化以及 DNA 水平的编程。
B) 通过多种机制,具有多种途径,包括细胞朝着构建全新区域的工作方向发展。
C) 我们在这些课程中研究的这些机制,现在也是关键(概念、隐喻/视图):指导形态发生的软件,如在几个背景/动物中呈现的例子中所示。
D) 以上都是
20. 生物电最好概括为(就其潜力和意义而言):
A) 在创造过程中发挥关键的基础作用。
B) 增加制药公司使用的传统方法的新能力。
C) 提供软件能力(蓝图设置、信息、信号和区域之间的通信,甚至可以跨越整个身体)。
D) 以上都是。
迈克尔·莱文 生物电 101 速成课程 第二十二课:生物电作为软件:超越基因的身体塑造 答案表
1. C
2. B
3. D
4. A
5. D
6. A
7. D
8. B
9. D
10. C
11. B
12. D
13. D
14. B
15. D
16. D
17. B
18. A
19. D
20. D