Michael Levin Bioelectricity 101 Crash Course Lesson 19: Reversing Cancer: Can Bioelectricity Normalize Tumors?

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 19: Reversing Cancer: Can Bioelectricity Normalize Tumors? Summary

  • Traditional cancer treatments often focus on killing cancer cells (chemotherapy, radiation), which can have severe side effects.
  • Bioelectric approaches offer a different strategy: reprogramming cancer cells to behave normally, rather than eliminating them.
  • This involves restoring the normal, hyperpolarized membrane potential (Vmem) that is characteristic of healthy cells.
  • Experiments in animal models (tadpoles) have shown that inducing hyperpolarization can suppress tumor formation, even in the presence of strong oncogenes.
  • This “normalization” is not cell-autonomous; the bioelectric state of surrounding tissues can influence the behavior of cancerous cells, highlighting the importance of the microenvironment.
  • The bioelectric approach targets the system-level problem of disrupted cellular communication, rather than just focusing on individual mutated genes.
  • This opens up the possibility of less toxic and more effective cancer treatments that work by restoring the body’s natural control mechanisms.
  • Computer models can find which factors, including known channel drugs (electroceuticals), can reestablish those electric communications.

Michael Levin Bioelectricity 101 Crash Course Lesson 19: Reversing Cancer: Can Bioelectricity Normalize Tumors?

In the previous lesson, we established that cancer is not just a genetic disease, but fundamentally a disease of disrupted cellular communication, with bioelectricity playing a crucial role. We saw how cancer cells often have a depolarized membrane potential, disconnecting them from the body’s control network and leading to uncontrolled growth and spread. This raises a fundamental question: can we reverse this process? Can we use our understanding of bioelectricity to not just prevent cancer, but to actually normalize existing tumors? The answer, surprisingly, appears to be a resounding yes, at least in certain experimental models.

The traditional approach to cancer treatment has largely focused on killing cancer cells. Chemotherapy and radiation therapy, while often effective, are essentially “scorched earth” tactics. They damage or destroy cells indiscriminately, harming both cancerous and healthy tissues. This leads to the severe side effects that are all too familiar to cancer patients.

The bioelectric approach offers a fundamentally different paradigm. Instead of trying to eradicate cancer cells, the goal is to reprogram them – to coax them back into behaving like normal, well-behaved members of the cellular community. It’s like taking a delinquent and rehabilitating them, rather than simply locking them up (or worse).

The key to this reprogramming lies in restoring the normal bioelectric state of the cells. As we’ve discussed, healthy cells typically maintain a hyperpolarized membrane potential (negative inside relative to outside). Cancer cells, on the other hand, are often depolarized. So, the bioelectric strategy is to shift the Vmem of cancer cells back towards the hyperpolarized state.

How can we achieve this? There are several potential methods:

  1. Ion Channel Modulators (“Electroceuticals”): Drugs that specifically target ion channels can be used to open or close these channels, altering the flow of ions across the cell membrane and thereby changing the Vmem. For example, a drug that opens potassium channels would tend to hyperpolarize the cell (make the inside more negative), as potassium ions would flow out.
  2. Gap Junction Enhancers: Increasing gap junctional communication between cells can help to “reconnect” cancer cells to the surrounding healthy tissue. This allows the normal, hyperpolarizing signals from healthy cells to influence the cancerous cells, pulling them back towards a normal state.
  3. External Electric Fields: Applying external electric fields can directly influence the Vmem of cells. This approach is still in its early stages, but it holds promise for non-invasively modulating the bioelectric state of tumors.
  4. Serotonin modulators: Since Serotonin release is tied to voltage, it would then, by changing serotonin signaling in cancer cells, revert behavior

The most compelling evidence for the feasibility of this approach comes from experiments in animal models, particularly the tadpole model system used extensively by Michael Levin’s lab. In these experiments, researchers have been able to induce tumors in tadpoles by injecting them with mRNA encoding human oncogenes (genes that promote cancer). These tadpoles develop tumors that are remarkably similar to human cancers.

But here’s the crucial part: if, at the same time they inject the oncogene, they also inject mRNA encoding a hyperpolarizing ion channel (a channel that makes the cell’s interior more negative), they can prevent tumor formation. Even though the tadpoles have the genetic “recipe” for cancer, the altered bioelectric state prevents the cancer from developing. The oncogenes are there, but don’t do anything.

Even more remarkably, they can achieve this “normalization” even if they introduce the hyperpolarizing channel in cells distant from the site of the oncogene injection. This demonstrates that it’s not just the bioelectric state of the individual cancer cell that matters; it’s the bioelectric state of the surrounding tissue, the microenvironment. The healthy, hyperpolarized cells can exert a “normalizing” influence on their cancerous neighbors, preventing them from forming tumors. This speaks volumes, as many anti-cancer approaches up to this point only affected the tumor cells in of themselves; bioelectric signals’ affecting large groups of cells allow manipulation and potential remedies not possible until now.

This is a profound concept. It means that cancer is not just a cell-autonomous disease – a disease driven solely by the internal state of individual cells. It’s a system-level disease, a breakdown in the communication and coordination between cells. And, crucially, this system-level breakdown can be corrected by manipulating the bioelectric state of the tissue. This can work even with strong genetic mutations.

Think of it like a group of musicians playing out of tune. You could try to “fix” the problem by replacing each individual musician (analogous to killing cancer cells). But a much more elegant solution would be to provide a conductor who can bring them all back into harmony (analogous to restoring the normal bioelectric state).

This bioelectric approach is not just a theoretical possibility; it’s a rapidly developing field with enormous potential. The development of “electroceuticals” – drugs that specifically target ion channels – is a major focus of research. And computational models are being developed to predict the effects of different bioelectric interventions, guiding the design of new therapies. The goal is to create a “bioelectric pharmacology” that can precisely control the Vmem of cells and tissues, restoring normal function and reversing the course of cancer. It bears repeating: by correcting the body’s electrical “software” the underlying hardware can thus remain intact, the mutations might still even be there, the genetic changes have not gone away – however their behaviors is radically transformed.


Michael Levin Bioelectricity 101 Crash Course Lesson 19: Reversing Cancer: Can Bioelectricity Normalize Tumors? Quiz

1. Traditional cancer treatments like chemotherapy and radiation primarily focus on:

A) Reprogramming cancer cells.
B) Killing cancer cells.
C) Restoring cellular communication.
D) Modulating the immune system.

2. The bioelectric approach to cancer treatment aims to:

A) Eradicate all cells in the body.
B) Reprogram cancer cells to behave normally.
C) Introduce new genetic mutations.
D) Increase the rate of cell division.

3. What is the typical membrane potential (Vmem) state of a healthy cell that the bioelectric approach seeks to restore in cancer cells?

A) Depolarized
B) Hyperpolarized
C) Neutral
D) Oscillating

4. Experiments in tadpoles have shown that inducing ______ can suppress tumor formation.

A) Depolarization
B) Hyperpolarization
C) Increased gap junction communication
D) Both B and C

5. True or False: The bioelectric state of surrounding tissues can influence the behavior of cancerous cells.

A) True
B) False

6. The bioelectric approach targets the ______ problem of disrupted cellular communication in cancer.

A) Genetic
B) System-level
C) Molecular
D) Chemical

7. “Electroceuticals” are drugs that target:

A) DNA.
B) RNA.
C) Ion channels.
D) Proteins.

8. The following factors could shift bioelectric states and are targets for bioelectric medicine
A) Ion Channel Modulators
B) Gap Junction Enhancers
C) Serotonin modulators
D) All of the Above.

9. What is a significant advantage of the bioelectric approach compared to traditional cancer treatments?

A) It is more toxic to healthy cells.
B) It has the potential to be less toxic and more effective.
C) It is more expensive.
D) It requires more frequent treatments.

10. What is another possible bioelectric targeting approach?

A) External Electric Fields.
B) Applying Magnetic Fields.
C) Injecting Serotonin
D) Applying Melatonin.

11. The Levin Lab shows that by also injecting mRNA encoding for hyperpolarizing ion channels, that Tadpoles will________.

A) Always get cancer anyway
B) Develop normally, not affected by injected oncogenes
C) Always Mutate
D) None of the Above.

12. True or False. Bioelectric “normalization” can occur if the bioelectric therapy occurs away from, even opposite of the place, where the cells show tumorous activity

A) True
B) False.

13. A “microenviroment” is….

A) Only where the affected cells themselves reside, locally.
B) The surrounding tissues, including bioelectric status, genes, hormones etc. of tissues, near or far, from cancer
C) The microbiome
D) The outside environment in which the organism lives in

14. What could then “normalize” cells

A) Correct Vmems
B) Signals, potentially electrical, coming from far away tissues
C) Hormones.
D) All of the Above.

15. Cancer, therefore, shows a disruption of what property, if tissues and entire limbs or body sections can affect tumor expression:

A) Single cell property, exclusively
B) A breakdown of large-scale coordination and cooperation.
C) Bad Luck.
D) Environment-only factors

16. Analogy time: if the cancer were like a broken instrument, Bioelectric renormalization would be,

A) Attempting to re-harmonize, reintegrate back into the orchestral pattern by repairing communications and restoring the normal landscape.
B) Throwing out the bad instrument
C)Replacing bad players one-by one
D)None of the Above

17. Michael Levin’s cancer research involves creating computational models of what systems?

A) Neural Systems
B) Bioelectrical Circuits
C) Planarian Regeneration circuits
D) Ion movement.

18. The bioelectric field of medicine will utilize computational, predictive systems alongside real-world biology and drug experiments to discover and administer a ____ for certain cancer cases.

A) Surgery.
B) Chemotherapy Cocktail
C) Precise coctail of channel modulators
D) Magic Pill

19. In this approach to medicine, the underlying genetic problems are _______

A) Changed completely
B) Rewritten by Gene editing.
C) Still Exist, but the bioelectric landscape programs correct behavior
D) Still exist and will remain that way always, nothing will get rid of the defect.

20. Which is false? Bioelectric medicine in regards to cancer, in short, aims to,

A) Kill cancerous cells
B) “Re-educate” cells
C) Return misbehaving cells into playing nicely in a tissue
D) Find and then use, via computational modelling, channel modulators to re-establish a functional electrical signal for guiding growth


Michael Levin Bioelectricity 101 Crash Course Lesson 19: Reversing Cancer: Can Bioelectricity Normalize Tumors? Answer Sheet

1. B

2. B

3. B

4. D

5. A

6. B

7. C

8. D

9. B

10. A

11. B

12. A

13. B

14. D

15. B

16. A

17. B

18. C

19. C

20. A


迈克尔·莱文 生物电 101 速成课程 第19课:逆转癌症:生物电能否使肿瘤正常化? 摘要

  • 传统的癌症治疗通常侧重于杀死癌细胞(化疗、放疗),这可能会产生严重的副作用。
  • 生物电方法提供了一种不同的策略:重新编程癌细胞使其行为正常,而不是消除它们。
  • 这涉及恢复健康细胞特有的正常、超极化的膜电位 (Vmem)。
  • 动物模型(蝌蚪)的实验表明,诱导超极化可以抑制肿瘤形成,即使存在强癌基因。
  • 这种“正常化”不是细胞自主的; 周围组织的生物电状态会影响癌细胞的行为,突出了微环境的重要性。
  • 生物电方法针对的是细胞通讯中断的系统级问题,而不仅仅关注个别突变基因。
  • 这开辟了毒性更小、更有效的癌症治疗的可能性,这些治疗通过恢复身体的自然控制机制发挥作用。
  • 计算机模型可以找到哪些因素,包括已知的通道药物(电疗药物),可以重建这些电通讯。

迈克尔·莱文 生物电 101 速成课程 第19课:逆转癌症:生物电能否使肿瘤正常化?

在上一课中,我们确定癌症不仅仅是一种基因疾病,它本质上是一种细胞通讯中断的疾病,其中生物电起着至关重要的作用。 我们看到了癌细胞通常如何具有去极化的膜电位,使它们与身体的控制网络断开连接并导致不受控制的生长和扩散。 这提出了一个基本问题:我们能逆转这个过程吗? 我们能否利用我们对生物电的理解,不仅预防癌症,还能真正正常化现有的肿瘤? 令人惊讶的是,答案似乎是肯定的,至少在某些实验模型中是这样。

传统的癌症治疗方法主要集中在杀死癌细胞。 化疗和放疗虽然通常有效,但本质上是“焦土”策略。 它们不加区别地损害或破坏细胞,同时损害癌细胞和健康组织。 这导致了癌症患者非常熟悉的严重副作用。

生物电方法提供了一种截然不同的范式。 与其试图根除癌细胞,不如说是重新编程它们——诱导它们重新表现得像细胞群落中正常、行为良好的成员。 这就像让一个违法者改过自新,而不是简单地把他们关起来(或更糟)。

这种重新编程的关键在于恢复细胞的正常生物电状态。 正如我们所讨论的,健康细胞通常维持超极化的膜电位(内部相对于外部为负)。 另一方面,癌细胞通常是去极化的。 因此,生物电策略是将癌细胞的 Vmem 移回超极化状态。

我们如何才能做到这一点? 有几种潜在的方法:

  1. 离子通道调节剂(“电疗药物”): 专门靶向离子通道的药物可用于打开或关闭这些通道,改变离子跨细胞膜的流动,从而改变 Vmem。 例如,打开钾通道的药物会倾向于使细胞超极化(使内部更负),因为钾离子会流出。
  2. 间隙连接增强剂: 增加细胞之间的间隙连接通讯有助于将癌细胞“重新连接”到周围的健康组织。 这使得来自健康细胞的正常、超极化信号能够影响癌细胞,将它们拉回正常状态。
  3. 外部电场: 施加外部电场可以直接影响细胞的 Vmem。 这种方法仍处于早期阶段,但它有望用于无创调节肿瘤的生物电状态。
  4. 血清素调节剂:由于血清素的释放与电压有关,因此,通过改变癌细胞中的血清素信号传导,可以逆转行为

这种方法可行性的最有力证据来自动物模型实验,特别是迈克尔·莱文实验室广泛使用的蝌蚪模型系统。 在这些实验中,研究人员已经能够通过给蝌蚪注射编码人类癌基因(促进癌症的基因)的 mRNA 来诱导蝌蚪的肿瘤。 这些蝌蚪产生的肿瘤与人类癌症非常相似。

但关键的部分是:如果他们在注射癌基因的同时,他们注射了编码超极化离子通道(使细胞内部更负的通道)的 mRNA,他们就可以防止肿瘤形成。 即使蝌蚪具有癌症的基因“配方”,改变的生物电状态也能防止癌症的发展。 癌基因在那里,但什么也没做

更值得注意的是,即使他们在远离癌基因注射部位的细胞中引入超极化通道,他们也可以实现这种“正常化”。 这表明重要的不仅仅是单个癌细胞的生物电状态; 这是周围组织的生物电状态,即微环境。 健康的、超极化的细胞可以对它们的癌变邻居施加“正常化”影响,防止它们形成肿瘤。 这说明了很多问题,因为到目前为止,许多抗癌方法只影响肿瘤细胞本身; 生物电信号影响大细胞,从而实现迄今为止不可能的操纵和潜在的补救措施。

这是一个深刻的概念。 这意味着癌症不仅仅是一种细胞自主性疾病——一种仅由单个细胞的内部状态驱动的疾病。 这是一种系统级疾病,是细胞之间通讯和协调的崩溃。 而且,至关重要的是,这种系统层面的崩溃可以通过操纵组织的生物电状态来纠正。 即使有很强的基因突变,这也能起作用。

可以把它想象成一群音乐家演奏不合拍。 你可以尝试通过更换每个音乐家来“解决”这个问题(类似于杀死癌细胞)。 但一个更优雅的解决方案是提供一位指挥,他可以让所有人恢复和谐(类似于恢复正常的生物电状态)。

这种生物电方法不仅仅是一种理论上的可能性; 它是一个快速发展的领域,具有巨大的潜力。 “电疗药物”——专门针对离子通道的药物——的开发是研究的一个主要焦点。 并且正在开发计算模型来预测不同生物电干预措施的影响,指导新疗法的设计。 目标是创造一种“生物电药理学”,可以精确控制细胞和组织的 Vmem,恢复正常功能并逆转癌症的进程。 值得重申的是:通过纠正身体的电“软件”,底层硬件可以保持完好,突变可能仍然存在,基因变化并没有消失——但它们的行为却发生了根本性的转变。


迈克尔·莱文 生物电 101 速成课程 第19课:逆转癌症:生物电能否使肿瘤正常化?小测验

1. 化疗和放疗等传统癌症治疗主要侧重于:

A) 重新编程癌细胞。
B) 杀死癌细胞。
C) 恢复细胞通讯。
D) 调节免疫系统。

2. 癌症治疗的生物电方法旨在:

A) 根除体内的所有细胞。
B) 重新编程癌细胞使其行为正常。
C) 引入新的基因突变。
D) 提高细胞分裂的速度。

3. 生物电方法试图在癌细胞中恢复健康细胞的典型膜电位 (Vmem) 状态是什么?

A) 去极化
B) 超极化
C) 中性
D) 振荡

4. 蝌蚪实验表明,诱导 ______ 可以抑制肿瘤形成。

A) 去极化
B) 超极化
C) 增加间隙连接通讯
D) B 和 C

5. 对或错:周围组织的生物电状态会影响癌细胞的行为。

A) 对
B) 错

6. 生物电方法针对癌症中细胞通讯中断的 ______ 问题。

A) 遗传
B) 系统级
C) 分子
D) 化学

7. “电疗药物”是靶向什么的药物?

A) DNA。
B) RNA。
C) 离子通道。
D) 蛋白质。

8. 以下哪些因素可以改变生物电状态并且是生物电医学的靶点 A) 离子通道调节剂 B) 间隙连接增强剂 C) 血清素调节剂 D) 以上都是。

9. 与传统癌症治疗相比,生物电方法的一个显着优势是什么?

A) 它对健康细胞的毒性更大。
B) 它有可能毒性更小、更有效。
C) 它更贵。
D) 它需要更频繁的治疗。

10. 另一种可能的生物电靶向方法是什么?

A) 外部电场。
B) 施加磁场。
C) 注射血清素
D) 应用褪黑激素。

11. 莱文实验室表明,通过同时注射编码超极化离子通道的 mRNA,蝌蚪会________。

A) 无论如何都会得癌症
B) 正常发育,不受注射的癌基因影响
C) 总是突变
D) 以上都不是。

12. 对或错。 如果生物电疗法发生在远离甚至与细胞显示肿瘤活动的位置相反的地方,生物电“正常化”就会发生

A) 对
B) 错。

13. “微环境”是….

A) 仅受影响细胞本身所在的位置,局部。
B) 周围组织,包括生物电状态、基因、激素等,靠近或远离癌症的组织
C) 微生物组
D) 生物体生活的外部环境

14. 那么什么可以“正常化”细胞

A) 正确的 Vmem
B) 来自远处组织的信号,可能是电信号
C) 激素。
D) 以上都是。

15. 因此,如果组织和整个四肢或身体部位会影响肿瘤表达,那么癌症表明什么特性中断:

A) 仅限单细胞特性
B) 大规模协调与合作的崩溃。
C) 坏运气。
D) 仅限环境因素

16. 打个比方:如果癌症就像一件坏掉的乐器,生物电再正常化就是,

A) 试图通过修复通讯和恢复正常景观来重新协调、重新融入管弦乐模式。
B) 扔掉坏乐器
C)逐一更换糟糕的演奏者
D)以上都不是

17. 迈克尔·莱文的癌症研究涉及创建什么系统的计算模型?

A) 神经系统
B) 生物电路
C) 涡虫再生电路
D) 离子运动。

18. 生物电医学领域将利用计算、预测系统以及现实世界的生物学和药物实验来发现并为某些癌症病例开出 ____。

A) 手术。
B) 化疗鸡尾酒
C) 精确的通道调节剂混合物
D) 神奇药丸

19. 在这种医学方法中,潜在的遗传问题是 _______

A) 完全改变
B) 通过基因编辑重写。
C) 仍然存在,但生物电景观会规划正确的行为
D) 仍然存在并将永远保持这种状态,没有什么可以消除缺陷。

20. 哪个是错误的? 简而言之,生物电医学在癌症方面旨在,

A) 杀死癌细胞
B) “再教育”细胞
C) 让行为不端的细胞重新融入组织中
D) 通过计算建模找到并使用通道调节剂来重建引导生长的功能性电信号


迈克尔·莱文 生物电 101 速成课程 第19课:逆转癌症:生物电能否使肿瘤正常化?答案表

1. B

2. B

3. B

4. D

5. A

6. B

7. C

8. D

9. B

10. A

11. B

12. A

13. B

14. D

15. B

16. A

17. B

18. C

19. C

20. A