Michael Levin Bioelectricity 101 Crash Course Lesson 17: Bioelectricity and Cancer: The Loss of Cellular Communication Summary
- Cancer is not solely a genetic disease; it’s fundamentally a disease of disrupted cellular communication, particularly bioelectric communication.
- Healthy cells maintain a specific membrane potential (Vmem) and communicate via gap junctions, forming a coordinated network that works towards large-scale anatomical goals.
- Cancer cells often exhibit a depolarized Vmem and reduced gap junctional connectivity, effectively disconnecting them from the body’s control network.
- This disconnection allows cancer cells to revert to a more primitive, unicellular state, prioritizing their own proliferation and survival over the needs of the organism.
- Bioelectric signals can both induce and suppress cancer-like behavior, demonstrating their powerful influence over cell fate.
- Targeting bioelectric signaling pathways offers a promising new avenue for cancer prevention and treatment, aiming to reprogram cancer cells rather than just killing them.
- Cancer is not a “single-cell disease,” it results when the tissue is no longer following orders.
Michael Levin Bioelectricity 101 Crash Course Lesson 17: Bioelectricity and Cancer: The Loss of Cellular Communication
Up to this point, we’ve explored the amazing ways that cells use bioelectricity to communicate, coordinate their actions, and build and maintain complex structures. We’ve seen how voltage gradients act as a kind of “electrical blueprint” guiding development and regeneration. Now, we’re going to examine what happens when this intricate system breaks down – and the profound consequences it has for health, leading to the devastating disease we know as cancer.
It’s crucial to understand that cancer is not just about genetic mutations. While mutations in certain genes (oncogenes and tumor suppressor genes) certainly play a role, they are not the whole story. Think of it this way: a car can malfunction because of a broken engine part (like a faulty gene). But it can also malfunction because of a faulty wiring system, even if all the engine parts are perfectly fine. Cancer, in many ways, is more like the latter – a problem with the communication network that controls how cells behave, even if the “hardware” (the genes) is initially intact.
Let’s revisit the analogy of the body as a collective intelligence, a “society” of cells working together. In a healthy body, cells are like well-behaved citizens. They follow the rules, they communicate with their neighbors, and they contribute to the overall well-being of the community. They do this, in large part, through bioelectric signaling. They maintain a specific membrane potential (Vmem), they share information via gap junctions, and they respond appropriately to the electrical cues in their environment.
Cancer cells, on the other hand, are like rebellious members of society. They’ve stopped listening to the rules, they’ve isolated themselves from their neighbors, and they’re only focused on their own survival and proliferation. They’ve essentially “seceded” from the multicellular collective and reverted to a more primitive, unicellular state.
This “rebellion” is often driven, at least in part, by a disruption in bioelectric signaling. Specifically, cancer cells tend to have a depolarized membrane potential compared to healthy cells. Remember from earlier lessons that the membrane potential is typically negative inside the cell relative to the outside. A depolarized state means that this voltage difference is less negative or even positive.
This change in voltage might seem small, but it has huge consequences. It’s like changing the setting on a thermostat. A healthy cell’s Vmem is set to “maintain normal function.” A cancer cell’s Vmem is set to “proliferate uncontrollably.” This depolarization does several things that contribute to the cancer phenotype:
- Disconnection from Gap Junctions: Cancer cells often exhibit reduced gap junctional communication. They close off the channels that allow them to share electrical and chemical signals with their neighbors. This is like cutting the phone lines – they’re no longer receiving instructions from the rest of the body. They become bioelectrically isolated.
- Altered Gene Expression: Changes in Vmem can directly influence gene expression. Remember that voltage gradients can act as signals, and these signals can trigger changes in which genes are turned on or off. Depolarization can activate genes that promote cell division and inhibit genes that suppress tumor growth.
- Increased Proliferation: The depolarized state is often associated with increased cell proliferation – the uncontrolled division of cells that forms tumors.
- Enhanced Migration and Invasion: Cancer cells often become more mobile and invasive, spreading to other parts of the body (metastasis). Changes in Vmem can influence the proteins that control cell movement and adhesion, facilitating this spread.
- Ignoring Stop Signals: The large scale structure, maintained by electrical patterns, normally will order cell collectives, “Stop growing – the limb, hand, etc. is done”. When cancerous cells lose connectivity to their normal neighbors, they can ignore such stop instructions.
The crucial point is that these changes can be triggered by alterations in bioelectricity, even in the absence of genetic mutations. This is a radical departure from the traditional, gene-centric view of cancer. It means that you can have a perfectly normal cell, genetically speaking, that becomes cancerous simply because its bioelectric state has been altered. This could happen due to environmental factors, exposure to certain chemicals, or even random fluctuations in the cellular environment. It also gives evidence that certain chemicals are not neccessarily affecting the DNA itself, but by changing bioelctric conditions.
The reverse is also true: you can have a cell with cancer-causing mutations that behaves normally if its bioelectric state is maintained within a healthy range. This has been demonstrated in remarkable experiments by Michael Levin and his colleagues. They’ve shown that they can induce cancer-like behavior in tadpoles by simply manipulating the Vmem of certain cells, without introducing any genetic mutations or carcinogens. Conversely, they can suppress tumor formation, even in the presence of strong oncogenes, by forcing cells to maintain a hyperpolarized (more negative) Vmem.
These experiments provide compelling evidence that bioelectricity is not just a consequence of cancer; it’s a driver of the disease. It’s a key player in the complex dance between cells that determines whether they behave in a coordinated, healthy way or in a chaotic, cancerous way. It can override genes.
This understanding opens up exciting new possibilities for cancer treatment. Instead of just trying to kill cancer cells (which is often a blunt and damaging approach, harming healthy cells as well), we can potentially reprogram them. We can try to restore their normal bioelectric state, reconnect them to the body’s communication network, and coax them back into behaving like well-behaved citizens of the cellular society.
This could involve using drugs that target ion channels (known as “electroceuticals”), or even using external electrical fields to modulate the Vmem of cells. It’s a fundamentally different approach to cancer therapy, one that focuses on restoring normal communication rather than simply eradicating aberrant cells. It’s a shift from a “war on cancer” to a more nuanced strategy of “cellular diplomacy.”
Michael Levin Bioelectricity 101 Crash Course Lesson 17: Bioelectricity and Cancer: The Loss of Cellular Communication Quiz
1. Cancer is primarily a disease of:
A) Genetic mutations only.
B) Disrupted cellular communication, particularly bioelectric communication.
C) Viral infections.
D) Aging.
2. Healthy cells maintain a specific ______ and communicate via ______.
A) Action potential; synapses
B) Membrane potential (Vmem); gap junctions
C) Chemical signal; hormones
D) Genetic code; DNA
3. Cancer cells often exhibit a ______ Vmem compared to healthy cells.
A) Hyperpolarized
B) Depolarized
C) Neutral
D) Fluctuating
4. What is the effect of reduced gap junctional connectivity in cancer cells?
A) Increased communication with neighboring cells.
B) Disconnection from the body’s control network.
C) Enhanced response to growth signals.
D) Suppression of tumor growth.
5. The altered Vmem in cancer cells can directly influence:
A) The speed of light.
B) The Earth’s gravitational field.
C) Gene expression.
D) The weather.
6. A depolarized Vmem is often associated with:
A) Decreased cell proliferation.
B) Increased cell proliferation.
C) Enhanced cell differentiation.
D) Improved cell communication.
7. Metastasis, the spread of cancer, can be influenced by changes in Vmem affecting:
A) Proteins that control cell movement and adhesion.
B) The size of the cell’s nucleus.
C) The color of the cell.
D) The cell’s ability to perform photosynthesis.
8. True or False: Changes in bioelectricity can trigger cancer-like behavior even in the absence of genetic mutations.
A) True
B) False
9. True or False: Cells with cancer-causing mutations always behave in a cancerous way, regardless of their bioelectric state.
A) True
B) False
10. Bioelectricity can be considered a ______ of cancer, not just a ______.
A) Consequence; driver
B) Driver; consequence
C) Symptom; cure
D) Treatment; cause
11. “Electroceuticals” are drugs that target:
A) DNA.
B) RNA.
C) Ion channels.
D) Proteins.
12. The new approach to cancer therapy based on bioelectricity focuses on:
A) Killing cancer cells.
B) Reprogramming cancer cells to behave normally.
C) Genetically modifying cancer cells.
D) Ignoring cancer cells.
13. What is a good analogy for healthy cells?
A) A single-celled organism living out its agenda in its enviroment.
B) Well behaved citizens that are well behaved.
C) An army out on the battlefield.
D) Students in detention
14. What is a good analogy for cancer cells
A) Well behaved citizens in society
B) An orchestra of different cells.
C) A rebellion against the orders, against communicating with their neighbors.
D) None of the Above
15. By changing bioelectric states in cancer cells, the new paradigm’s objective is
A) To induce apoptosis
B) To trigger immune system response
C) To reintegrate them to normal society and thus follow normal orders from bioelectric fields.
D) B and C
16. Gap junction disconnection is most analagous to:
A) Receiving clear instructions
B) Giving instructions
C) Cutting the telephone wires so the receiver has no idea what he should do
D) None of the Above.
17. In Michael Levin’s experiments, scientists can _______ tumors via _______
A) induce, blocking certain receptors.
B) Supress, changing cells voltages
C) Cure, a chemical coctail.
D) All of the Above
18. Changing a cell’s Resting Membrane Potential will affect its.
A) Genes
B) Environment
C) Neighbors.
D) All of the Above
19. Is cancer a single-cell problem or a tissue problem?
A) A Single-Cell Problem.
B) A Tissue-Level problem
20. Changing Bioelectric Gradients would fall under a ______ understanding of medicine
A) Genetic
B) Molecular
C) Physiological
D) Evolutionary.
Michael Levin Bioelectricity 101 Crash Course Lesson 17: Bioelectricity and Cancer: The Loss of Cellular Communication Answer Sheet
1. B
2. B
3. B
4. B
5. C
6. B
7. A
8. A
9. B
10. B
11. C
12. B
13. B
14. C
15. C
16. C
17. D
18. D
19. B
20. C
迈克尔·莱文 生物电 101 速成课程 第17课:生物电与癌症:细胞通讯的丧失 摘要
- 癌症不仅仅是一种基因疾病;它本质上是一种细胞通讯紊乱的疾病,尤其是生物电通讯。
- 健康细胞维持特定的膜电位(Vmem)并通过间隙连接进行通讯,形成一个协调的网络,朝着大规模的解剖目标努力。
- 癌细胞通常表现出去极化的 Vmem 和减少的间隙连接通讯,有效地将它们与身体的控制网络断开。
- 这种断开使癌细胞能够恢复到更原始的单细胞状态,优先考虑自身的增殖和生存,而不是生物体的需要。
- 生物电信号可以诱导和抑制类似癌症的行为,证明它们对细胞命运的强大影响。
- 靶向生物电信号通路为癌症预防和治疗提供了一条有希望的新途径,旨在重新编程癌细胞,而不仅仅是杀死它们。
- 癌症不是“单细胞疾病”,当组织不再遵循指令时,就会导致癌症。
迈克尔·莱文 生物电 101 速成课程 第17课:生物电与癌症:细胞通讯的丧失
到目前为止,我们已经探索了细胞利用生物电进行通讯、协调其行为以及构建和维护复杂结构的惊人方式。 我们已经看到电压梯度如何充当一种“电蓝图”,指导发育和再生。 现在,我们将研究当这个复杂的系统崩溃时会发生什么——以及它对健康的深远影响,导致我们所知的癌症这种毁灭性疾病。
至关重要的是要明白,癌症不仅仅是基因突变。 虽然某些基因(癌基因和肿瘤抑制基因)的突变肯定起作用,但它们并不是故事的全部。 可以这样想:汽车可能会因为发动机零件损坏(如基因故障)而发生故障。 但即使所有发动机零件都完好无损,它也可能因为接线系统故障而发生故障。 在许多方面,癌症更像是后者——通讯网络的问题,它控制着细胞的行为,即使“硬件”(基因)最初是完好的。
让我们回顾一下将身体比作集体智慧,一个“社会”细胞协同工作的类比。 在健康的身体中,细胞就像行为良好的公民。 他们遵守规则,与邻居交流,并为社区的整体福祉做出贡献。 他们在很大程度上通过生物电信号来做到这一点。 他们维持特定的膜电位 (Vmem),通过间隙连接共享信息,并对环境中的电信号做出适当的反应。
另一方面,癌细胞就像社会中叛逆的成员。 他们不再听从规则,将自己与邻居隔离开来,只专注于自己的生存和增殖。 他们本质上已经从多细胞集体中“脱离”出来,恢复到更原始的单细胞状态。
这种“叛逆”通常至少部分是由生物电信号的中断驱动的。 具体来说,与健康细胞相比,癌细胞往往具有去极化的膜电位。 回想一下前面的课程,细胞膜电位通常在细胞内部相对于外部是负的。 去极化状态意味着这种电压差不那么负,甚至是正的。
这种电压变化看似很小,但却产生了巨大的后果。 这就像更改恒温器上的设置。 健康细胞的 Vmem 设置为“维持正常功能”。 癌细胞的 Vmem 设置为“不受控制地增殖”。 这种去极化会做几件事,导致癌症表型:
- 与间隙连接断开: 癌细胞通常表现出减少的间隙连接通讯。 他们关闭了允许他们与邻居共享电信号和化学信号的通道。 这就像切断电话线——他们不再接收来自身体其他部位的指令。 它们在生物电上变得孤立。
- 基因表达改变: Vmem 的变化可以直接影响基因表达。 请记住,电压梯度可以充当信号,这些信号可以触发哪些基因打开或关闭的变化。 去极化可以激活促进细胞分裂的基因并抑制抑制肿瘤生长的基因。
- 增殖增加: 去极化状态通常与细胞增殖增加有关——形成肿瘤的细胞不受控制的分裂。
- 增强的迁移和侵袭:癌细胞通常变得更具移动性和侵袭性,扩散到身体的其他部位(转移)。 Vmem 的变化会影响控制细胞运动和粘附的蛋白质,从而促进这种扩散。
- 忽略停止信号:由电模式维持的大规模结构,通常会命令细胞集体,“停止生长 – 肢体、手等已经完成”。 当癌细胞失去与其正常邻居的连接时,它们可以忽略这些停止指令。
关键在于,这些变化可以由生物电的改变触发,即使没有基因突变。 这与传统的、以基因为中心的癌症观点截然不同。 这意味着,从基因上讲,你可以拥有一个完全正常的细胞,仅仅因为它的生物电状态发生了改变,它就变成了癌细胞。 这可能是由于环境因素、暴露于某些化学物质,甚至细胞环境中的随机波动造成的。 它还提供了证据,证明某些化学物质不一定影响 DNA 本身,而是通过改变生物电条件来影响。
反之亦然:如果你的细胞具有致癌突变,但如果其生物电状态保持在健康范围内,其行为也可能正常。 迈克尔·莱文和他的同事在非凡的实验中证明了这一点。 他们已经表明,他们可以诱导蝌蚪的类癌行为,只需操纵某些细胞的 Vmem,无需引入任何基因突变或致癌物。 相反,即使存在强癌基因,他们也可以通过强制细胞维持超极化(更负)的 Vmem 来抑制肿瘤形成。
这些实验提供了令人信服的证据,证明生物电不仅仅是癌症的后果; 它是疾病的驱动因素。 它是细胞之间复杂舞蹈中的关键角色,决定了它们是以协调、健康的方式还是以混乱、癌变的方式行事。 它可以覆盖基因。
这种理解为癌症治疗开辟了令人兴奋的新可能性。 与其仅仅试图杀死癌细胞(这通常是一种钝的和破坏性的方法,也会损害健康细胞),我们有可能重新编程它们。 我们可以尝试恢复它们正常的生物电状态,将它们重新连接到身体的通讯网络,并诱导它们重新表现得像细胞社会中行为良好的公民。
这可能涉及使用靶向离子通道的药物(称为“电疗药物”),甚至使用外部电场来调节细胞的 Vmem。 这是一种与癌症治疗截然不同的方法,一种侧重于恢复正常通讯而不仅仅是根除异常细胞的方法。 这是从“癌症战争”转向更微妙的“细胞外交”战略。
迈克尔·莱文 生物电 101 速成课程 第17课:生物电与癌症:细胞通讯的丧失 小测验
1. 癌症主要是一种什么疾病?
A) 仅限基因突变。
B) 细胞通讯中断,尤其是生物电通讯。
C) 病毒感染。
D) 衰老。
2. 健康细胞维持特定的 ______ 并通过 ______ 进行通讯。
A) 动作电位;突触
B) 膜电位 (Vmem);间隙连接
C) 化学信号;激素
D) 遗传密码;DNA
3. 与健康细胞相比,癌细胞通常表现出 ______ Vmem。
A) 超极化
B) 去极化
C) 中性
D) 波动
4. 癌细胞中减少的间隙连接通讯有什么影响?
A) 增加与邻近细胞的通讯。
B) 与身体的控制网络断开。
C) 增强对生长信号的反应。
D) 抑制肿瘤生长。
5. 癌细胞中改变的 Vmem 可以直接影响:
A) 光速。
B) 地球的引力场。
C) 基因表达。
D) 天气。
6. 去极化的 Vmem 通常与以下哪一项有关?
A) 细胞增殖减少。
B) 细胞增殖增加。
C) 细胞分化增强。
D) 改善细胞通讯。
7. 癌症的转移(扩散)会受到 Vmem 变化的影响,影响:
A) 控制细胞运动和粘附的蛋白质。
B) 细胞核的大小。
C) 细胞的颜色。
D) 细胞进行光合作用的能力。
8. 对或错:即使没有基因突变,生物电的变化也可以触发类似癌症的行为。
A) 对
B) 错
9. 对或错:无论其生物电状态如何,具有致癌突变的细胞总是以癌变方式行事。
A) 对
B) 错
10. 生物电可以被认为是癌症的 ______,而不仅仅是 ______。
A) 后果;驱动因素
B) 驱动因素;后果
C) 症状;治愈
D) 治疗;原因
11. “电疗药物”是靶向什么的药物?
A) DNA。
B) RNA。
C) 离子通道。
D) 蛋白质。
12. 基于生物电的癌症治疗新方法侧重于:
A) 杀死癌细胞。
B) 重新编程癌细胞使其行为正常。
C) 对癌细胞进行基因改造。
D) 忽略癌细胞。
13. 健康细胞的一个好比喻是什么?
A) 在其环境中实现其议程的单细胞生物。
B) 行为良好的公民。
C) 战场上的军队。
D) 被拘留的学生
14. 癌细胞的一个好比喻是什么
A) 社会中行为良好的公民
B) 不同细胞组成的管弦乐队。
C) 反抗命令,反抗与邻居交流。
D) 以上都不是
15. 通过改变癌细胞中的生物电状态,新范式的目标是
A) 诱导细胞凋亡
B) 触发免疫系统反应
C) 将它们重新整合到正常社会中,从而遵循生物电场的正常指令。
D) B 和 C
16. 间隙连接断开最类似于:
A) 接收明确的指示
B) 发出指示
C) 切断电话线,使接收器不知道该怎么办
D) 以上都不是。
17. 在迈克尔·莱文的实验中,科学家可以通过_______ 来_______ 肿瘤
A) 诱导,阻断某些受体。
B) 抑制,改变细胞电压
C) 治愈,化学混合物。
D) 以上都是
18. 改变细胞的静息膜电位会影响其。
A) 基因
B) 环境
C) 邻居。
D) 以上都是
19. 癌症是单细胞问题还是组织问题?
A) 单细胞问题。
B) 组织层面的问题
20. 改变生物电梯度属于医学的 ______ 理解
A) 遗传
B) 分子
C) 生理
D) 进化。
迈克尔·莱文 生物电 101 速成课程 第17课:生物电与癌症:细胞通讯的丧失 答案表
1. B
2. B
3. B
4. B
5. C
6. B
7. A
8. A
9. B
10. B
11. C
12. B
13. B
14. C
15. C
16. C
17. D
18. D
19. B
20. C