Michael Levin Bioelectricity 101 Crash Course Lesson 14: Target Morphology: Defining the “Shape Goal” with Bioelectricity

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 14: Target Morphology: Defining the “Shape Goal” with Bioelectricity Summary

  • “Target morphology” refers to the desired final shape or structure of a developing or regenerating organism, tissue, or organ. It’s the “end goal” of the biological process.
  • This target morphology is not solely encoded in the DNA sequence. It is, at least in part, encoded in a dynamic pattern of bioelectric signals.
  • The bioelectric pattern acts as a kind of “set point” or “attractor state” for the system. The system will actively work to achieve and maintain this pattern, even if disturbed.
  • This “set point” is analogous to a thermostat, which maintains a desired temperature by turning a heating or cooling system on or off.
  • The target morphology is not a static image or blueprint; it’s a dynamic pattern that can change over time during development and regeneration.
  • Cells sense deviations from the target morphology (errors) through changes in their local bioelectric environment (voltage gradients, gap junction communication).
  • They respond to these errors by adjusting their behavior (proliferation, differentiation, migration, apoptosis) to restore the correct pattern.
  • Manipulating bioelectric signals can alter the target morphology, leading to changes in the final anatomical outcome (e.g., two-headed planaria, extra limbs in frogs).
  • The anatomical “goal” state exist prior to tissue/parts changes, a blueprint not at just the cellular or genomic level, but _beyond_.
  • The pattern memory can even enable override of genetic defect.
  • The pattern serves like stored memory that “resists” or “persists” against perturbations, changes that aren’t permanent, so system reverts back toward its established pattern, or attractor.

Michael Levin Bioelectricity 101 Crash Course Lesson 14: Target Morphology: Defining the “Shape Goal” with Bioelectricity

We’ve been exploring how bioelectricity plays a crucial, instructive role in development and regeneration. We’ve seen how cells communicate through ion channels, gap junctions, and voltage gradients, and how these signals can influence cell behavior. We’ve introduced the concept of the “Anatomical Compiler” as a framework for understanding how these processes are coordinated to build complex structures. Now, let’s focus on a critical piece of this puzzle: the target morphology.

What do we mean by “target morphology”? Simply put, it’s the desired final shape or structure of a developing or regenerating organism, tissue, or organ. It’s the “end goal” that the system is striving to achieve.

For example:

  • In a developing embryo, the target morphology might be “form a complete, four-limbed vertebrate with all organs in the correct places.”
  • In a regenerating planarian, the target morphology might be “regrow a complete worm with one head and one tail.”
  • In a healing wound, the target morphology might be “restore the integrity of the skin.”

It’s crucial to understand that the target morphology is not a detailed, step-by-step instruction manual. It’s not like a set of architectural plans that specify every single detail of the structure. Instead, it’s more like a general goal or a desired state.

Think of it like setting the thermostat in your house. You don’t tell the thermostat how to maintain the temperature; you simply set the desired temperature (the “target”). The thermostat then monitors the actual temperature and turns the heating or cooling system on or off as needed to reach and maintain that target. It operates dynamically. The goal exists independent of outside circumstances, that are always occurring (room size, outside heat etc).

The target morphology in biological systems works in a similar way. It’s a kind of “set point” or “attractor state” that the system actively strives to achieve and maintain. The “anatomical compiler,” through the interplay of bioelectric signals and cellular behaviors, acts like the thermostat, constantly monitoring the current state of the system and making adjustments to move towards the target morphology.

Crucially, the target morphology is not solely encoded in the DNA sequence. DNA provides the instructions for building the individual components (the proteins), but it doesn’t directly specify the large-scale organization of those components. The target morphology is, at least in part, encoded in a dynamic pattern of bioelectric signals.

This bioelectric pattern – the voltage gradients, the gap junction connectivity, the ion flows – creates a kind of “electrical landscape” that guides cell behavior. Cells can “sense” their position within this landscape and respond accordingly. If there’s a deviation from the target morphology (e.g., due to injury or a disruption in the bioelectric pattern), the cells will detect this “error” and adjust their behavior to correct it.

This error correction is a key feature of the anatomical compiler and the target morphology concept. The system is not just following a pre-programmed script; it’s actively monitoring its progress and making adjustments to ensure that it reaches the desired outcome.

Let’s revisit some of the examples we’ve discussed in previous lessons and see how the concept of target morphology applies:

  • Planarian Regeneration: When a planarian is cut, the target morphology is “regenerate a complete worm.” The bioelectric pattern at the wound site encodes this goal, and the cells respond by proliferating, migrating, and differentiating to rebuild the missing structures. The memory can persist! Even after dozens of cuts, with no new instructions from anywhere else, the body re-grows the worm!
  • Two-Headed Planaria: By blocking gap junctions, researchers alter the bioelectric pattern and effectively change the target morphology to “regenerate a two-headed worm.” The cells then respond to this new target, building a head where a tail should be. The “decision” persists, no matter what scientists do to disrupt and further damage/cutting this worm, its bioelectric system have locked in to a new program.
  • Frog Limb Regeneration: In the experiments where Levin’s lab induced limb regrowth in adult frogs, they were essentially “re-activating” the target morphology for “grow a limb” by manipulating the bioelectric signals at the wound site. The short period of drug treatment only initiated, not provided long-term, management/execution over that body formation, in effect, the early intervention created bioelectric memory, lasting far beyond just chemical change’s direct impact.

These examples demonstrate that the target morphology is not fixed or immutable. It can be altered by manipulating bioelectric signals, leading to changes in the final anatomical outcome.

How do cells “sense” the target morphology and detect deviations from it? They do this through their local bioelectric environment:

  • Voltage Gradients: Cells can sense the direction and magnitude of voltage gradients, which provide positional information.
  • Gap Junction Communication: Cells can share information about their membrane potential and other electrical properties with their neighbors through gap junctions. This allows them to coordinate their activity and detect inconsistencies in the bioelectric pattern.
  • Chemical Changes: In the famous Electric Face, cells receive signals on development before known chemical changes ever begin.

When a cell detects a discrepancy between its local bioelectric environment and the expected pattern (indicating an error), it triggers a series of intracellular signaling pathways that lead to changes in cell behavior. These changes can include:

  • Increased or decreased proliferation: To grow or shrink tissue as needed.
  • Changes in differentiation: To become the appropriate cell type for the location.
  • Migration: To move to the correct position within the structure.
  • Apoptosis: To eliminate cells that are in the wrong place or are no longer needed.

The concept of target morphology, encoded in bioelectric signals and interpreted by the anatomical compiler, is a powerful way to understand how biological systems achieve and maintain their complex forms. It moves beyond a purely gene-centric view and highlights the dynamic, adaptive, and programmable nature of living organisms. It suggests that we might one day be able to control development and regeneration, not by manipulating genes directly, but by manipulating the “electrical language” of cells. This approach opens a possibility of achieving goals through intervening at the software, leaving much of cell-internal operation intact.


Michael Levin Bioelectricity 101 Crash Course Lesson 14: Target Morphology: Defining the “Shape Goal” with Bioelectricity Quiz

1. What is “target morphology”?

A) A new species.
B) The desired final shape or structure of a developing or regenerating organism, tissue, or organ.
C) A detailed, step-by-step instruction manual for building a specific structure.
D) A purely genetic phenomena.

2. True or False: The target morphology is solely encoded in the DNA sequence.

A) True
B) False

3. How is the target morphology encoded, at least in part?

A) In a static image of the final structure.
B) In a dynamic pattern of bioelectric signals.
C) Exclusively on cells’ internal processes.
D) In chemical gradients only.

4. What system acts like “Thermostat” in animals, providing similar analogous bioelectric functionalities to tissues.

A) The genome/genes alone
B) The bioelectric “pattern memory”, providing “set points” for “intended” outcomes
C) Gap Junctions
D) Ion Pumps

5. True or False: The target morphology is a static, unchanging pattern.

A) True
B) False

6. What’s the meaning of phrase “homeostatic system” in biology?

A) A single parameter to be constant
B) Many levels such as shapes.
C) A “pull” to restore back to baseline after disturbances.
D) All of the above.

7. How do cells detect deviations from the target morphology?

A) They cannot; cells are only aware of their internal state.
B) Cells detect the mismatch to the voltage “blueprint” and starts restoring toward prior electrical patterns
C) They sense changes in their local bioelectric environment.
D) Both B and C are correct.

8. When errors are “sensed”, or changes from the “normal” or pre-configured state get triggered, what then occurs at those damaged/cut regions?

A) Bioelectrical activity alterations (voltages, fields etc) happen and begin re-organizing only at the blastema, leaving elsewhere unaffect
B) Blastema isn’t formed, but there’s still signals.
C) It starts building appropriate voltage set-points through setting off new global level patterns guiding entire shape reconstruction.
D) Nothing occurs

9. What can happen if you manipulate bioelectric signals and alter the target morphology?

A) Nothing; the target morphology is fixed and cannot be changed.
B) The final anatomical outcome can change.
C) The cells will immediately die.
D) The DNA sequence will be altered.

10. Which experiments provide evidence for the concept of target morphology?

A) Creation of single headed planaria.
B) Creation of two-headed planaria, and frogs regenerating legs, as controlled using voltage signals.
C) Creation of “Picasso frogs”
D) None. There are no biological phenomena consistent with concepts mentioned on “Target Morphology”

11. Is it possible to control/change entire body’s high level organizational events without altering gene level.

A) Yes. Through changes only at the gap junctions
B) Through Ion concentration management at body wide scales
C) Only mRNA expressions has that level of change capacities, anything else can at most make limited outcomes, so the answer is NO.
D) A and B.

12. Which can override/influence “lower levels”?

A) “Software-level” mechanisms, i.e, cell network voltage fields/signals
B) “Higher order” memory encoded across cells and in gap junction communication
C) Neither
D) A and B

13. What does Levin’s work reveal for how bioelectricity helps form organisms

A) That it has robust “goal-directedness”, to resist against perturbations or errors in construction
B) That this capacity must emerge out of simple local/chemical interactions.
C) That large scale patterns come after cells grow.
D) All of the above.

14. Does this pattern memory affect other levels?

A) Yes, genetic only.
B) No.
C) Yes. But there is interaction with mechanical/structural tensions also.
D) Its effects isn’t testable.

15. What can the idea of “Target morphology”, controlled by Bioelectricity potentially do:

A) Provide new clinical avenues, via manipulating voltage field
B) Offer deeper insights on origins/triggers for developmental defects
C) Allow control for regenerative medicine for higher organisms.
D) All of the above.

16. If normal development were paused or delayed, at one particular stage, without permanent changes/killing tissues:

A) No subsequent recovery exists, and all must restart the sequence all the way to that point again.
B) New tissue is not possible, unless damage happens.
C) The normal organism formation processes still occurs as normal once signal perturbation halts
D) None of the above.

17. True or False. Even when tissues got completely rebuilt into vastly new patterns of morphologies and cell functions (for example the Planaria heads, including full nerve connections, behaviors, etc), a reference back to older “configuration” remain even if the normal state (of a Planarian) would’ve called for different tissue placements.

A) True
B) False

18. In the Levin Lab two-headed work, if scientists block gap junctions and created persistent/stable “memories” across multiple cuts, how does the newly created state then “control” itself?

A) Only when a scientist is doing cutting
B) Only when some electrical measurement/alteration done between those periods of regeneration/growth.
C) If no cuts were applied, this state reverts quickly back to normal
D) The body and organism keeps creating that state autonomously even with no further intervention.

19. How can we make changes and influence tissue-organization/regeneration?

A) Through Ion Channels, via electric, genetic and physical interventions.
B) Drugs and other biochemical changes that would target gap junctions between adjacent cells.
C) Both A and B
D) Bioelectric changes, being secondary processes from DNA activities, only chemical pathways could ever offer those mechanisms, but not bioelectricity, so, B only

20. What does it mean that Target morphology serves like a blueprint or coordinate system?

A) The tissue “error correction” system provides way to recover toward that intended end state (blueprint).
B) They set “global, high level” plans that other (like lower ones inside of each cell, individually) actions follows, setting tissue placements and what growth ought to occur, from single cell actions, that must ultimately add up toward that end result, specified (coded) via “software”.
C) Voltage gradients help migration direction to allow, specify and control, when/where cells form patterns
D) All of the above


Michael Levin Bioelectricity 101 Crash Course Lesson 14: Target Morphology: Defining the “Shape Goal” with Bioelectricity Answer Sheet

1. B

2. B

3. B

4. B

5. B

6. D

7. D

8. C

9. B

10. B

11. D

12. D

13. D

14. D

15. D

16. D

17. A

18. D

19. D

20. D


迈克尔·莱文 生物电101速成课程 第十四课:目标形态:用生物电定义“形状目标” 摘要

  • “目标形态”是指发育中或再生中的生物体、组织或器官的期望最终形状或结构。它是生物过程的“最终目标”。
  • 这个目标形态仅仅编码在DNA序列中。它至少部分地编码在生物电信号的动态模式中。
  • 生物电模式充当系统的“设定点”或“吸引子状态”。即使受到干扰,系统也会积极地努力实现和维持这种模式。
  • 这个“设定点”类似于恒温器,恒温器通过打开或关闭加热或冷却系统来保持所需的温度。
  • 目标形态不是静态图像或蓝图;它是一个动态模式,可以在发育和再生过程中随时间变化。
  • 细胞通过其局部生物电环境(电压梯度、间隙连接通讯)的变化来感知与目标形态的偏差(错误)。
  • 它们通过调整其行为(增殖、分化、迁移、凋亡)来纠正这些错误,以恢复正确的模式。
  • 操纵生物电信号可以改变目标形态,从而导致最终解剖结果的变化(例如,双头涡虫、青蛙的额外肢体)。
  • 解剖“目标”状态存在于组织/部分变化之前,这是一个不仅仅在细胞或基因组水平上的蓝图,而是超越
  • 模式记忆甚至可以覆盖遗传缺陷。
  • 该模式就像存储的记忆,可以“抵抗”或“持续”对抗扰动,即非永久性的变化,因此系统会恢复到其已建立的模式或吸引子

迈克尔·莱文 生物电101速成课程 第十四课:目标形态:用生物电定义“形状目标”

我们一直在探索生物电如何在发育和再生中发挥至关重要的指导作用。我们已经看到细胞如何通过离子通道、间隙连接和电压梯度进行通讯,以及这些信号如何影响细胞行为。我们已经介绍了“解剖编译器”的概念,作为一个框架来理解这些过程是如何协调的以构建复杂的结构。现在,让我们关注这个难题的一个关键部分:目标形态

我们所说的“目标形态”是什么意思?简而言之,它是发育中或再生中的生物体、组织或器官的期望最终形状或结构。它是系统努力实现的“最终目标”。

例如:

  • 在发育中的胚胎中,目标形态可能是“形成一个完整的、四肢脊椎动物,所有器官都在正确的位置”。
  • 在再生的涡虫中,目标形态可能是“重新长出一个完整的蠕虫,有一个头和一条尾巴”。
  • 在愈合的伤口中,目标形态可能是“恢复皮肤的完整性”。

至关重要的是要理解目标形态不是详细的、逐步的指导手册。它不像一套详细说明结构每一个细节的建筑图纸。相反,它更像是一个总体目标或一个期望状态

可以把它想象成设置你家里的恒温器。你不会告诉恒温器如何保持温度;你只需设置期望温度(“目标”)。然后,恒温器会监测实际温度,并根据需要打开或关闭加热或冷却系统,以达到并保持该目标。它是动态运作的。目标独立于外界环境而存在,外界环境一直在发生(房间大小、外部热量等)。

生物系统中的目标形态以类似的方式工作。它是一种“设定点”或“吸引子状态”,系统会积极地努力实现和维持。“解剖编译器”通过生物电信号和细胞行为的相互作用,就像恒温器一样,不断地监测系统的当前状态并进行调整以朝着目标形态移动。

至关重要的是,目标形态仅仅编码在 DNA 序列中。DNA 提供了构建单个组件(蛋白质)的指令,但它并没有直接指定这些组件的大规模组织。目标形态至少部分地编码在生物电信号的动态模式中。

这种生物电模式——电压梯度、间隙连接连通性、离子流——创造了一种“电景观”,指导细胞行为。细胞可以“感知”它们在这个景观中的位置并做出相应的反应。如果与目标形态存在偏差(例如,由于损伤或生物电模式中断),细胞将检测到这种“错误”并调整其行为以纠正它。

这种错误纠正是解剖编译器和目标形态概念的一个关键特征。系统不仅仅是遵循预先编程的脚本;它还在积极地监控其进展并进行调整以确保它达到预期的结果。

让我们回顾一下我们在之前的课程中讨论过的一些例子,看看目标形态的概念是如何应用的:

  • 涡虫再生: 当涡虫被切割时,目标形态是“再生一个完整的蠕虫”。伤口部位的生物电模式编码了这个目标,细胞通过增殖、迁移和分化来重建缺失的结构来做出反应。记忆可以持续存在!即使经过几十次切割,没有任何来自其他地方的新指令,身体也会重新长出蠕虫!
  • 双头涡虫: 通过阻断间隙连接,研究人员改变了生物电模式,并有效地将目标形态改变为“再生一个双头蠕虫”。然后细胞对这个目标做出反应,在应该有尾巴的地方长出一个头。 “决定”持续存在,无论科学家做什么来破坏和进一步损害/切割这条蠕虫,它的生物电系统都已经锁定到一个新的程序中。
  • 青蛙肢体再生: 在莱文实验室诱导成年青蛙肢体再生的实验中,他们基本上是通过操纵伤口部位的生物电信号来“重新激活”“长出肢体”的目标形态。短期的药物治疗只是启动,而不是提供对该身体形成的长期管理/执行,实际上,早期干预创造了生物电记忆,其持续时间远远超过化学变化的直接影响。

这些例子表明,目标形态不是固定的或不可变的。它可以通过操纵生物电信号来改变,从而导致最终解剖结果的变化。

细胞如何“感知”目标形态并检测到与它的偏差?它们通过其局部生物电环境来做到这一点:

  • 电压梯度: 细胞可以感知电压梯度的方向和大小,这提供了位置信息。
  • 间隙连接通讯: 细胞可以通过间隙连接与邻居共享有关其膜电位和其他电特性的信息。这使它们能够协调其活动并检测生物电模式中的不一致之处。
  • 化学变化:在著名的电面中,细胞在已知的化学变化开始之前就收到了关于发育的信号。

当细胞检测到其局部生物电环境与预期模式之间的差异(表明存在错误)时,它会触发一系列细胞内信号通路,从而导致细胞行为的变化。这些变化可以包括:

  • 增殖增加或减少: 根据需要生长或收缩组织。
  • 分化变化: 成为该位置合适的细胞类型。
  • 迁移: 移动到结构内的正确位置。
  • 凋亡: 消除位于错误位置或不再需要的细胞。

目标形态的概念,编码在生物电信号中并由解剖编译器解释,是理解生物系统如何实现和维持其复杂形态的有力方法。它超越了纯粹以基因为中心的观点,突出了生物体的动态、适应性和可编程性质。这表明我们有朝一日可能能够控制发育和再生,不是通过直接操纵基因,而是通过操纵细胞的“电语言”。这种方法开启了通过干预软件来实现目标,同时保持大部分细胞内部运作完整的可能性。


迈克尔·莱文 生物电 101 速成课程 第十四课:目标形态:用生物电定义“形状目标” 小测验

1. 什么是“目标形态”?

A) 一个新物种。
B) 发育中或再生中的生物体、组织或器官的期望最终形状或结构。
C) 构建特定结构的详细、分步指导手册。
D) 一种纯粹的遗传现象。

2. 对或错:目标形态仅编码在 DNA 序列中。

A) 对
B) 错

3. 目标形态至少部分是如何编码的?

A) 在最终结构的静态图像中。
B) 在生物电信号的动态模式中。
C) 仅在细胞的内部过程中。
D) 仅在化学梯度中。

4. 什么系统在动物中像“恒温器”一样,为组织提供类似的模拟生物电功能。

A) 仅基因组/基因
B) 生物电“模式记忆”,为“预期”结果提供“设定点”
C) 间隙连接
D) 离子泵

5. 对或错:目标形态是静态的、不变的模式。

A) 对
B) 错

6. 生物学中“稳态系统”一词的含义是什么?

A) 要保持恒定的单个参数
B) 许多级别,例如形状。
C) “拉动”以在受到干扰后恢复到基线。
D) 以上都是。

7. 细胞如何检测与目标形态的偏差?

A) 它们不能;细胞只知道它们的内部状态。
B) 细胞检测到与电压“蓝图”的不匹配,并开始恢复到先前的电模式
C) 它们感知到局部生物电环境的变化。
D) B 和 C 都正确。

8. 当“感测”到错误,或者触发了与“正常”或预先配置的状态的变化时,那些受损/切割区域会发生什么?

A) 生物电活动改变(电压、场等)发生并开始在胚基处重新组织,而其他地方不受影响
B) 胚基未形成,但仍有信号。
C) 它开始通过设置新的全局级别模式来构建适当的电压设定点,以指导整个形状重建。
D) 什么也没发生

9. 如果你操纵生物电信号并改变目标形态,会发生什么?

A) 什么都不会发生;目标形态是固定的,无法更改。
B) 最终的解剖结果会发生变化。
C) 细胞会立即死亡。
D) DNA 序列将被改变。

10. 哪些实验为目标形态的概念提供了证据?

A) 创造单头涡虫。
B) 创造双头涡虫,以及青蛙再生腿,使用电压信号进行控制。
C) 创造“毕加索青蛙”
D) 没有。没有任何生物现象与“目标形态”中提到的概念一致

11. 是否可以不改变基因水平来控制/改变整个身体的高级组织事件。

A) 是。仅通过间隙连接的变化
B) 通过在全身范围内管理离子浓度
C) 仅 mRNA 表达具有该水平的变化能力,其他任何东西最多只能产生有限的结果,因此答案是否定的。
D) A 和 B。

12. 哪些可以覆盖/影响“较低级别”?

A) “软件级”机制,即细胞网络电压场/信号
B) “更高级”记忆编码细胞和间隙连接通讯
C) 两者都不是
D) A 和 B

13. 莱文的工作揭示了生物电如何帮助形成生物体

A) 它具有强大的“目标导向性”,可以抵抗构建过程中的扰动或错误
B) 这种能力必须来自简单的局部/化学相互作用。
C) 大规模模式在细胞生长后出现。
D) 以上都是。

14. 这种模式记忆会影响其他级别吗?

A) 是的,只有遗传的。
B) 不。
C) 是的。 但是机械/结构张力也存在相互作用。
D) 它的影响是不可测试的。

15. 受生物电控制的“目标形态”的概念可能会做什么:

A) 通过操纵电压场提供新的临床途径
B) 提供对发育缺陷的起源/触发因素的更深入了解
C) 允许控制高等生物的再生医学。
D) 以上都是。

16. 如果正常发育在某一特定阶段暂停或延迟,而没有永久性变化/杀死组织:

A) 不存在后续恢复,并且所有必须从头开始重新启动到该点的序列。
B) 除非发生损坏,否则不可能出现新的组织。
C) 一旦信号扰动停止,正常的生物体形成过程仍然会正常发生
D) 以上都不是。

17. 对或错。即使组织被完全重建为形态和细胞功能的新模式(例如涡虫头部,包括完整的神经连接、行为等),即使正常状态(涡虫)需要不同的组织放置,也会重新引用较旧的“配置” 。

A) 对
B) 错

18. 在莱文实验室的双头工作中,如果科学家阻断间隙连接并在多次切割中产生了持久/稳定的“记忆”,那么新创建的状态如何“控制”自身?

A) 只有当科学家正在切割时
B) 只有在再生/生长期间进行一些电测量/改变时。
C) 如果没有进行切割,这种状态会迅速恢复正常
D) 即使没有进一步干预,身体和生物体也会继续自主地创造这种状态。

19. 我们如何做出改变并影响组织组织/再生?

A) 通过离子通道,通过电、遗传和物理干预。
B) 针对相邻细胞之间间隙连接的药物和其他生化变化。
C) A 和 B
D) 生物电变化是 DNA 活动的次要过程,只有化学途径才能提供这些机制,但生物电不能,因此,只有 B

20. 目标形态像蓝图或坐标系是什么意思?

A) 组织“纠错”系统提供了一种恢复预期最终状态(蓝图)的方法。
B) 它们设置了“全局、高级”计划,其他(如每个细胞内部较低的)动作遵循这些计划,设置组织放置和应该发生的生长,从单个细胞动作,最终必须加起来达到通过“软件”指定(编码)的最终结果。
C) 电压梯度有助于迁移方向以允许、指定和控制细胞何时/何地形成模式
D) 以上都是


迈克尔·莱文 生物电 101 速成课程 第十四课:目标形态:用生物电定义“形状目标” 答案表

1. B

2. B

3. B

4. B

5. B

6. D

7. D

8. C

9. B

10. B

11. D

12. D

13. D

14. D

15. B

16. D

17. A

18. D

19. D

20. D