Michael Levin Bioelectricity 101 Crash Course Lesson 2: Bioelectricity vs. Nerves: Beyond the Brain’s Electrical Signals

PRINT ENGLISH BIOELECTRICITY LESSON

PRINT CHINESE BIOELECTRICITY LESSON


Michael Levin Bioelectricity 101 Crash Course Lesson 2: Bioelectricity vs. Nerves: Beyond the Brain’s Electrical Signals Summary

  • The nervous system uses fast, transient electrical signals called action potentials for rapid communication. These are like digital “on/off” switches.
  • Bioelectricity, as studied by Michael Levin and others, encompasses a much wider range of electrical phenomena, including slow, steady-state voltage gradients.
  • These steady-state gradients are like a continuous “landscape” of electrical potential, not just individual spikes.
  • While neurons are specialized for rapid communication, all cells have a membrane potential and participate in bioelectric signaling.
  • Bioelectric gradients (outside of neurons) are crucial for large-scale pattern formation, development, and regeneration, acting as a kind of “electrical blueprint.”
  • Nervous system signaling is primarily about information transmission, whereas broader bioelectricity is often about information storage (in the form of stable voltage patterns) and control of tissue-level processes.
  • The signals sent out by neurons affect and can change the bioelectric landscape. They are interelated, the nerves affect tissues bioelectrically.

Michael Levin Bioelectricity 101 Crash Course Lesson 2: Bioelectricity vs. Nerves: Beyond the Brain’s Electrical Signals

In Lesson 1, we introduced the fundamental concept of bioelectricity – the electrical activity that permeates all living cells, not just nerves. We touched upon the crucial difference between this broader bioelectricity and the more familiar electrical signaling of the nervous system. Now, we’re going to delve deeper into that distinction, because it’s absolutely essential for understanding the groundbreaking work of researchers like Michael Levin.

Let’s start with what most people already know: the nervous system. The brain, spinal cord, and nerves form an incredibly sophisticated communication network. When you want to move your hand, your brain sends a rapid series of electrical signals down nerve cells (neurons). These signals travel along specialized extensions of the neurons called axons, like electrical wires. When the signal reaches the end of the axon, it triggers the release of chemical messengers (neurotransmitters) that cross a tiny gap (the synapse) and stimulate the next cell (perhaps a muscle cell, causing it to contract).

The electrical signals that neurons use are called action potentials. Think of them as very brief, very sharp spikes in voltage. A neuron’s membrane potential, which is normally negative inside, suddenly becomes positive for a millisecond or two, and then quickly returns to its resting state. This spike is the action potential, and it’s a binary signal – it’s either there, or it’s not. It’s like a digital “1” or “0”. This “all-or-nothing” nature is important for ensuring that the signal doesn’t degrade as it travels long distances.

Imagine sending a message down a long telegraph wire. You wouldn’t want the signal to fade away halfway through! Action potentials are designed to prevent that from happening. They are regenerated along the axon, ensuring that the signal remains strong even if it has to travel several feet.

Now, here’s the critical point: Action potentials are fantastic for rapid, long-distance communication. They’re the body’s express mail service. But they’re not the whole story when it comes to bioelectricity. In fact, they represent a highly specialized form of bioelectrical signaling, found only in certain types of cells (primarily neurons and muscle cells).

The bioelectricity that Michael Levin and his colleagues are studying often involves something very different: slow, steady-state voltage gradients. These are not rapid spikes; they’re persistent differences in voltage potential across tissues, or even within a single cell.

Think back to the analogy of a topographical map from Lesson 1. Instead of thinking about a single, momentary spike in elevation, imagine a rolling landscape with hills, valleys, and plateaus. That’s a much better representation of the steady-state voltage gradients that exist in many tissues. These gradients are not random; they form a complex, dynamic pattern. And, crucially, this pattern changes over time, particularly during development, regeneration, and in response to injury.

Let’s make the distinction even clearer with another analogy. Imagine a light switch. Flicking the switch on and off sends a clear, discrete signal (like an action potential). But now imagine a dimmer switch. You can set the dimmer to different levels, creating a range of brightness. That’s more like the steady-state voltage gradients. The level of “brightness” (the voltage) isn’t just on or off; it can be anywhere on a continuous scale.

Moreover, imagine a whole room full of dimmer switches, each set to a different level. That creates a pattern of light and shadow. That pattern can convey information, just like the pattern of voltages in a tissue. And just as you could rearrange the dimmer switches to create a new pattern, the bioelectric pattern in a tissue can be altered, with profound consequences for the cells within that tissue.

So, what creates these steady-state voltage gradients? The answer, as we began to explore in Lesson 1, lies in ion channels and ion pumps. These are specialized proteins in the cell membrane that control the flow of ions (charged particles, like sodium, potassium, calcium, and chloride) into and out of the cell. The movement of these ions creates electrical currents, and the unequal distribution of ions across the membrane creates the membrane potential.

Unlike action potentials, which rely on specific types of ion channels (voltage-gated sodium and potassium channels), steady-state gradients are maintained by a wider variety of ion channels and pumps. These can include channels that are always open (leak channels), channels that are gated by chemical signals, and pumps that actively transport ions against their concentration gradient, using energy.

Crucially, all cells, not just neurons, have ion channels and pumps. All cells have a membrane potential. And therefore, all cells participate, to some extent, in bioelectric signaling. This is a fundamental departure from the traditional view, which focused almost exclusively on the electrical activity of the nervous system.

So what is this broader form of bioelectrity, then? It has several critically imporant attributes and distinctions, it can be said, to the action potentials of neurons:

  • It is Slower. Bioelectric gradients can change, but this will take not milliseconds. Instead, the speed would range from multiple seconds, minutes, or even hours, and beyond.
  • It can act across much wider distances. It’s about setting up gradients across tissues. A single cell can sense changes to the bioelectric environment. This gradient affects neighboring cells. The entire tissue thus works like this, like an electrical unit.
  • It represents information storage. Neurons can hold and transmitt short spurts of information using short, quick bursts of electricity, as above. However, slow gradients and consistent voltages can hold information for cells, such as memory.
  • Neurons Affect The Bioelectric Gradient The electrical spikes fired out by neurons are part of the greater bioelectric “picture” – it can also influence bioelectric fields across whole body parts, and can trigger regeneration and influence development, alongside of the resting voltage.

The implications of this are profound. The nervous system is, in a sense, a specialized subset of the broader bioelectric system. It’s evolved to use very fast, very precise electrical signals for rapid communication and control. But the underlying bioelectric “machinery” – the ion channels, the membrane potential, the ability of cells to sense and respond to electrical fields – is present in all cells, and it plays a fundamental role in a much wider range of biological processes. This bioelectric activity controls and creates large parts of us!

Understanding this broader bioelectricity opens up exciting new avenues for research and for medicine. It suggests that we can influence development, regeneration, and even cancer by manipulating the bioelectric “landscape” of tissues, not just by targeting individual genes or chemical pathways. This is the core of Michael Levin’s work – exploring this “electrical blueprint” of life and learning how to read and write it.


Michael Levin Bioelectricity 101 Crash Course Lesson 2: Bioelectricity vs. Nerves: Beyond the Brain’s Electrical Signals Quiz

1. Action potentials are best described as:

A) Slow, steady-state voltage gradients.
B) Fast, transient electrical signals.
C) Chemical messengers released by neurons.
D) The voltage difference across a cell’s membrane at rest.

2. Steady-state voltage gradients are:

A) Rapid spikes of electrical activity.
B) Persistent differences in voltage potential across tissues or within cells.
C) Found only in nerve cells.
D) Used for rapid, long-distance communication.

3. Which analogy best represents the difference between action potentials and steady-state voltage gradients?

A) A light switch versus a dimmer switch.
B) A train versus a car.
C) A river versus a lake.
D) A computer versus a calculator.

4. What cellular structures are primarily responsible for maintaining steady-state voltage gradients?

A) DNA and RNA
B) Ion channels and ion pumps
C) Ribosomes and mitochondria
D) Hormones and growth factors

5. True or False: Only neurons have a membrane potential and participate in bioelectric signaling.

A) True
B) False

6. The bioelectricity studied by Michael Levin is primarily focused on:

A) The rapid firing of action potentials in neurons.
B) The role of hormones in development.
C) The influence of slow, steady-state voltage gradients on biological processes.
D) The chemical communication between cells.

7. Which best characterizes the information-carrying properties of action potentials versus steady-state voltage gradients?

A) Action potentials carry structural information, whereas steady-state potentials carry quick commands.
B) Action potentials transmit quick, time-sensitive information, and steady-state voltage patterns can carry memory.
C) Both systems function the exact same way.
D) Only the chemical factors, and not bioelectricity at all, transmit important information

8. Bioelectric gradients (outside of neurons) are *most* crucial for which of the following?

A) Rapid muscle contraction
B) Large-scale pattern formation, development, and regeneration
C) The transmission of sensory information to the brain
D) The release of neurotransmitters at synapses

9. The nervous system’s electrical activity primarily transmits signals related to:

A) Rapid Response
B) Sensation and perception
C) Complex Reasoning and Memory
D) All of the Above

10. In the analogy of a telegraph wire, what aspect of action potentials prevents signal degradation over long distances?

A) They are very slow.
B) They are regenerated along the axon.
C) They are chemical signals.
D) They are steady-state voltage gradients.

11. Steady-state voltage differences in bioelectricity creates a what across a tissue?

A) Action potential
B) A pattern
C) Neuron
D) A and B

12. What is the name for the specialized extensions of neurons that transmit action potentials?

A) Dendrites
B) Axons
C) Synapses
D) Myelin sheaths

13. What is released when a nerve impuse hits the end of the neuron’s axon?

A) Neurotransmitters
B) An electrical signal
C) Nothing
D) Steady-state voltage gradients

14. The speed of non-nerve bioelectric changes is much ______ than a neuron

A) Faster
B) Slower
C) The Same
D) Varies greatly.

15. Compared to neuronal action potentials, broader bioelectrical signals play a larger role in:

A) Information Transmission.
B) Information Storage and Tissue Level Control.
C) Muscle Control.
D) Thought.

16. True or False: the nerves can also influence and create large parts of tissues through the bioelectricity it gives off?

A) True
B) False

17. The steady-state gradients caused by ion pumps occur…

A) …Only within cells
B) …Across tissues
C) …Between different animals.
D) …B and C.

18. Which phrase captures best that bioelectric fields outside the brain and nerves helps with large-scale effects such as forming limbs and repairing whole organs?

A) Fast communication
B) Pattern Formation
C) The Quick and the Dead
D) Neurotransmission.

19. Can the action potentials by nerves influence bioelectricty, such as helping tissue formation or regeneration?

A) Yes
B) No

20. Which better explains the distinction of a neuron firing off from the non-neural bioelectric processes?

A) One is rapid movement (neural firing) vs one that works slower (non-neural field change)
B) One only affects its neighbor cell (action potential) while the other sets up an area effect, and the whole of cells feel that changed influence, across space. (non-neural)
C) The action potential represents a more immediate quick, transmission, vs one of the bioelectric gradient of slower control of body parts.
D) All of The Above.


Michael Levin Bioelectricity 101 Crash Course Lesson 2: Bioelectricity vs. Nerves: Beyond the Brain’s Electrical Signals Answer Sheet

1. B

2. B

3. A

4. B

5. B

6. C

7. B

8. B

9. D

10. B

11. B

12. B

13. A

14. B

15. B

16. A

17. B

18. B

19. A

20. D


迈克尔·莱文 生物电 101 速成课程 第二课:生物电 vs. 神经:超越大脑的电信号 摘要

  • 神经系统使用称为动作电位快速瞬时电信号进行快速通信。 这些就像数字“开/关”开关。
  • 迈克尔·莱文等人研究的生物电包含更广泛的电现象,包括慢速稳态电压梯度。
  • 这些稳态梯度就像一个连续的电位“景观”,而不仅仅是单个尖峰。
  • 虽然神经元专门用于快速通信,但所有细胞都有膜电位并参与生物电信号传导。
  • 生物电梯度(神经元外部)对于大规模模式形成、发育和再生至关重要,起到一种“电蓝图”的作用。
  • 神经系统信号传导主要与信息传递有关,而更广泛的生物电通常与信息存储(以稳定电压模式的形式)和组织水平过程的控制有关。
  • 神经发出的信号会影响并可以改变生物电景观。 它们是相互关联的,神经以生物电的方式影响组织。

迈克尔·莱文 生物电 101 速成课程 第二课:生物电 vs. 神经:超越大脑的电信号

在第一课中,我们介绍了生物电的基本概念——渗透到所有活细胞(不仅仅是神经)中的电活动。 我们谈到了这种更广泛的生物电与更熟悉的神经系统电信号之间的关键区别。 现在,我们将更深入地研究这种区别,因为它对于理解迈克尔·莱文等研究人员的开创性工作至关重要。

让我们从大多数人已经知道的开始:神经系统。 大脑、脊髓和神经形成了一个极其复杂的通信网络。 当你想移动你的手时,你的大脑会沿着神经细胞(神经元)发送一系列快速的电信号。 这些信号沿着神经元的特殊延伸部分(称为轴突)传播,就像电线一样。 当信号到达轴突末端时,它会触发化学信使(神经递质)的释放,这些信使穿过一个微小的间隙(突触)并刺激下一个细胞(可能是肌肉细胞,导致其收缩)。

神经元使用的电信号称为动作电位。 可以将它们视为非常短暂、非常尖锐的电压尖峰。 神经元的膜电位(通常内部为负)突然变为正值一两毫秒,然后迅速恢复到其静息状态。 这个尖峰就是动作电位,它是一个二进制信号——它要么存在,要么不存在。 这就像一个数字“1”或“0”。 这种“全有或全无”的性质对于确保信号在长距离传播时不会退化非常重要。

想象一下沿着一根长长的电报线发送消息。 你不会希望信号在途中消失! 动作电位旨在防止这种情况发生。 它们沿着轴突再生,确保即使信号必须传播几英尺,信号仍然保持强劲。

现在,关键点来了:动作电位对于快速、长距离通信非常有用。 它们是身体的特快专递服务。 但当涉及到生物电时,它们不是全部。 事实上,它们代表了一种高度专业化的生物电信号形式,仅存在于某些类型的细胞中(主要是神经元和肌肉细胞)。

迈克尔·莱文和他的同事们正在研究的生物电通常涉及非常不同的东西:缓慢的稳态电压梯度。 这些不是快速的尖峰; 它们是组织之间甚至单个细胞内持续存在的电压电位差异。

回想一下第一课中地形图的类比。 与其考虑海拔的单个瞬时尖峰,不如想象一个有丘陵、山谷和高原的起伏景观。 这是对许多组织中存在的稳态电压梯度的更好表示。 这些梯度不是随机的; 它们形成了一个复杂的、动态的模式。 而且,至关重要的是,这种模式会随着时间的推移而变化,特别是在发育、再生和对损伤的反应过程中。

让我们用另一个类比来更清楚地区分。 想象一个电灯开关。 打开和关闭开关会发送一个清晰、离散的信号(如动作电位)。 但现在想象一个调光开关。 您可以将调光器设置为不同的级别,从而创建一系列亮度。 这更像是稳态电压梯度。 “亮度”水平(电压)不仅仅是打开或关闭; 它可以是连续尺度上的任何位置

此外,想象一个房间里装满了调光开关,每个开关都设置为不同的级别。 这就产生了一种光影模式。 这种模式可以传达信息,就像组织中的电压模式一样。 正如您可以重新排列调光开关以创建模式一样,组织中的生物电模式也可以改变,对该组织内的细胞产生深远的影响。

那么,是什么产生了这些稳态电压梯度呢? 正如我们在第一课中开始探索的那样,答案在于离子通道离子泵。 这些是细胞膜中的特殊蛋白质,可控制离子(带电粒子,如钠、钾、钙和氯)流入和流出细胞。 这些离子的运动会产生电流,离子在膜上的不均匀分布会产生膜电位。

与依赖特定类型离子通道(电压门控钠和钾通道)的动作电位不同,稳态梯度由更广泛的离子通道和泵维持。 这些可以包括始终打开的通道(泄漏通道)、由化学信号门控的通道以及使用能量主动逆浓度梯度运输离子的泵。

至关重要的是,所有细胞,不仅仅是神经元,都有离子通道和泵。 所有细胞都有膜电位。 因此,所有细胞都在一定程度上参与了生物电信号传导。 这是对传统观点的根本背离,传统观点几乎完全集中在神经系统的电活动上。

那么这种更广泛形式的生物电是什么呢? 可以说,它具有几个至关重要的属性和区别于神经元动作电位的特征:

  • 它更慢。生物电梯度会发生变化,但这不会花费毫秒。 相反,速度范围从几秒、几分钟甚至几小时甚至更长。
  • 它可以在更远的距离上发挥作用。它是关于在组织之间建立梯度。 单个细胞可以感知生物电环境的变化。 该梯度会影响相邻细胞。 因此,整个组织都像这样工作,就像一个电气单元。
  • 它代表信息存储神经元可以使用如上所述的短而快的电突发来保存和传输短时信息。 然而,缓慢的梯度和一致的电压可以为细胞保存信息,例如记忆。
  • 神经元影响生物电梯度神经元发出的电尖峰是更大的生物电“图景”的一部分 – 它还可以影响整个身体部位的生物电场,并且可以触发再生并影响发育, 与静息电压一起。

其含义是深远的。 从某种意义上说,神经系统是更广泛的生物电系统的专业化子集。 它已经进化到使用非常快、非常精确的电信号来进行快速通信和控制。 但是潜在的生物电“机制”——离子通道、膜电位、细胞感知和响应电场的能力——存在于所有细胞中,并且它在更广泛的生物过程中发挥着基础作用。 这种生物电活动控制并创造了我们的很大一部分!

了解这种更广泛的生物电为研究和医学开辟了令人兴奋的新途径。 这表明我们可以通过操纵组织的生物电“景观”来影响发育、再生甚至癌症,而不仅仅是通过靶向单个基因或化学途径。 这是迈克尔·莱文工作的核心——探索生命的“电蓝图”并学习如何阅读和书写它。


迈克尔·莱文 生物电 101 速成课程 第二课:生物电 vs. 神经:超越大脑的电信号 小测验

1. 动作电位最好描述为:

A) 缓慢的稳态电压梯度。
B) 快速、瞬时的电信号。
C) 神经元释放的化学信使。
D) 静息时细胞膜两侧的电压差。

2. 稳态电压梯度是:

A) 快速的电活动尖峰。
B) 组织之间或细胞内持续存在的电压电位差异。
C) 仅存在于神经细胞中。
D) 用于快速、长距离通信。

3. 哪个类比最能代表动作电位和稳态电压梯度之间的区别?

A) 电灯开关与调光开关。
B) 火车与汽车。
C) 河流与湖泊。
D) 计算机与计算器。

4. 哪些细胞结构主要负责维持稳态电压梯度?

A) DNA 和 RNA
B) 离子通道和离子泵
C) 核糖体和线粒体
D) 激素和生长因子

5. 对或错:只有神经元有膜电位并参与生物电信号传导。

A) 对
B) 错

6. 迈克尔·莱文研究的生物电主要集中在:

A) 神经元中动作电位的快速放电。
B) 激素在发育中的作用。
C) 缓慢、稳态电压梯度对生物过程的影响。
D) 细胞之间的化学通讯。

7. 哪个选项最能描述动作电位与稳态电压梯度的信息携带特性?

A) 动作电位携带结构信息,而稳态电位携带快速命令。
B) 动作电位传递快速的、时间敏感的信息,而稳态电压模式可以携带记忆。
C) 两个系统的工作方式完全相同。
D) 只有化学因素,而不是生物电,才能传递重要信息

8. 生物电梯度(神经元外部)对于以下哪一项至关重要?

A) 快速肌肉收缩
B) 大规模模式形成、发育和再生
C) 将感觉信息传递到大脑
D) 突触处神经递质的释放

9. 神经系统的电活动主要传递与以下相关的信号:

A) 快速响应
B) 感觉和感知
C) 复杂推理和记忆
D) 以上都是

10. 在电报线的类比中,动作电位的哪个方面可以防止信号在长距离传输时衰减?

A) 它们非常慢。
B) 它们沿着轴突再生。
C) 它们是化学信号。
D) 它们是稳态电压梯度。

11. 生物电中的稳态电压差会在组织中产生什么?

A) 动作电位
B) 一种模式
C) 神经元
D) A 和 B

12. 传递动作电位的神经元特殊延伸部分的名称是什么?

A) 树突
B) 轴突
C) 突触
D) 髓鞘

13. 当神经冲动到达神经元轴突末端时会释放什么?

A) 神经递质
B) 电信号
C) 什么都没有
D) 稳态电压梯度

14. 非神经生物电变化的速度比神经元 ______

A) 快
B) 慢
C) 相同
D) 变化很大。

15. 与神经元动作电位相比,更广泛的生物电信号在以下方面发挥着更大的作用:

A) 信息传递。
B) 信息存储和组织水平控制。
C) 肌肉控制。
D) 思想。

16. 对或错:神经也可以通过其释放的生物电影响并创造大部分组织?

A) 正确
B) 错误

17. 离子泵引起的稳态梯度发生在…

A) …仅在细胞内
B) …跨组织
C) …在不同的动物之间。
D) …B 和 C。

18. 哪个短语最能概括大脑和神经外部的生物电场有助于产生大规模效应,例如形成四肢和修复整个器官?

A) 快速通讯
B) 图案形成
C) 快与慢
D) 神经传递。

19. 神经的动作电位能否影响生物电,例如帮助组织形成或再生?

A) 能
B) 不能

20. 哪个选项更好地解释了神经元放电与非神经生物电过程的区别?

A) 一种是快速运动(神经放电),而另一种是较慢的运动(非神经场变化)
B) 一种只影响其相邻细胞(动作电位),而另一种则建立区域效应,整个细胞都能感受到这种变化的影响,跨越空间。 (非神经)
C) 动作电位代表更直接的快速传递,而生物电梯度则代表对身体部位的较慢控制
D) 以上都是。


迈克尔·莱文 生物电 101 速成课程 第二课:生物电 vs. 神经:超越大脑的电信号 答案表

1. B

2. B

3. A

4. B

5. B

6. C

7. B

8. B

9. D

10. B

11. B

12. B

13. A

14. B

15. B

16. A

17. B

18. B

19. A

20. D